Skip to main content

Advertisement

Log in

Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we investigate how natural killer (NK) cell recruitment to the tumor microenvironment (TME) affects oncolytic virotherapy. NK cells play a major role against viral infections. They are, however, known to induce early viral clearance of oncolytic viruses, which hinders the overall efficacy of oncolytic virotherapy. Here, we formulate and analyze a simple mathematical model of the dynamics of the tumor, OV and NK cells using currently available preclinical information. The aim of this study is to characterize conditions under which the synergistic balance between OV-induced NK responses and required viral cytopathicity may or may not result in a successful treatment. In this study, we found that NK cell recruitment to the TME must take place neither too early nor too late in the course of OV infection so that treatment will be successful. NK cell responses are most influential at either early (partly because of rapid response of NK cells to viral infections or antigens) or later (partly because of antitumoral ability of NK cells) stages of oncolytic virotherapy. The model also predicts that: (a) an NK cell response augments oncolytic virotherapy only if viral cytopathicity is weak; (b) the recruitment of NK cells modulates tumor growth; and (c) the depletion of activated NK cells within the TME enhances the probability of tumor escape in oncolytic virotherapy. Taken together, our model results demonstrate that OV infection is crucial, not just to cytoreduce tumor burden, but also to induce the stronger NK cell response necessary to achieve complete or at least partial tumor remission. Furthermore, our modeling framework supports combination therapies involving NK cells and OV which are currently used in oncolytic immunovirotherapy to treat several cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NK:

Natural killer

OV:

Oncolytic virus

ICD:

Immunogenic cell death

TME:

Tumor microenvironment

PAMPs:

Pathogen-associated molecular patterns

DAMPs:

Damage-associated molecular patterns

ODE:

Ordinary differential equations

\(\mathcal {R}_{0}\) :

Basic reproductive number

LHS:

Latin hypercube sampling

PRCC:

Partial rank correlation coefficients

References

  • Achard C, Boisgerault N, Delaunay T, Tangy F, Grégoire M, Fonteneau JF (2015) Induction of immunogenic tumor cell death by attenuated oncolytic measles virus. J Clin Cell Immunol 6:291

    Google Scholar 

  • Aghi M, Martuza RL (2005) Oncolytic viral therapies-the clinical experience. Oncogene 24(52):7802–7816

    Article  Google Scholar 

  • Alkayyal AA, Tai LH, Kennedy MA, de Souza CT, Zhang J, Lefebvre C et al (2017) NK-cell recruitment is necessary for eradication of peritoneal carcinomatosis with an IL\(12\)-expressing Maraba virus cellular vaccine. Cancer Immunol Res 5(3):211–221

    Article  Google Scholar 

  • Almuallem N, Trucu D, Eftimie R (2021) Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: a mathematical approach. Math Biosci Eng 18(1):764–799

    Article  MathSciNet  Google Scholar 

  • Alvarez-Breckenridge CA, Yu J, Kaur B, Caligiuri MA, Chiocca EA (2012a) Deciphering the multifaceted relationship between oncolytic viruses and natural killer cells. Adv Virol. https://doi.org/10.1155/2012/702839

  • Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, Mao H et al (2012b) NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med 18(12):1827–1834

  • Bailey K, Kirk A, Naik S, Nace R, Steele MB, Suksanpaisan L et al (2013) Mathematical model for radial expansion and conflation of intratumoral infectious centers predicts curative oncolytic virotherapy parameters. PLoS ONE 8:e73759

    Article  Google Scholar 

  • Bajzer Ž, Carr T, Josić K, Russell SJ, Dingli D (2008) Modeling of cancer virotherapy with recombinant measles viruses. J Theor Biol 252(1):109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Barish S, Ochs MF, Sontag ED, Gevertz JL (2017) Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. Proc Natl Acad Sci 114(31):E6277–E6286

    Article  Google Scholar 

  • Ben-Shmuel A, Biber G, Barda-Saad M (2020) Unleashing natural killer cells in the tumor microenvironment-the next generation of immunotherapy? Front Immunol 11:275

    Article  Google Scholar 

  • Bhat R, Rommelaere J (2015) Emerging role of Natural killer cells in oncolytic virotherapy. ImmunoTargets Therapy 4:65–77

    Google Scholar 

  • Bisheshar SK, Ruitera EJD, Devrieseb LA, Willemsa SM (2020) The prognostic role of NK cells and their ligands in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 9(1):e1747345

    Article  Google Scholar 

  • Blue CE, Spiller OB, Blackbourn DJ (2004) The relevance of complement to virus biology. Virology 319(2):176–184

    Article  Google Scholar 

  • Bommareddy PK, Zloza A, Rabkin SD, Kaufman HL (2019) Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. OncoImmunology 8(1):e1591875

    Article  Google Scholar 

  • Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA et al (2007) Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Therapy 15(9):1686–1693

    Article  Google Scholar 

  • Carr J (1981) Applications of centre manifold theory, applied mathematics sciences, 35th edn. Springer, New York

    Book  MATH  Google Scholar 

  • Cassidy T, Craig M (2019) Optimal individualized combination immunotherapy/oncolytic virotherapy determined through in silico clinical trials improves late stage melanoma patient outcomes. bioRxiv, p 585711

  • Cerwenka A, Lanier LL (2016) Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol 16(2):112–123

    Article  Google Scholar 

  • Chen X, Han J, Chu J, Zhang L, Zhang J, Chen C et al (2016) A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 19(7):27764

    Article  Google Scholar 

  • Choi JW, Lee JS, Kim SW, Yun CO (2012a) Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Deliv Rev 64(8):720–729

    Article  Google Scholar 

  • Choi KJ, Zhang SN, Choi IK, Kim JS, Yun CO (2012b) Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-\(12\) and GM-CSF. Gene Therapy 19:711–723

    Article  Google Scholar 

  • Choi JW, Lee YS, Yun CO, Kim SW (2015) Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release 219:181–191

    Article  Google Scholar 

  • Davola ME, Mossman KL (2019) Oncolytic viruses: how “lytic’’ must they be for therapeutic efficacy? Oncoimmunology 8(6):e1596006

    Article  Google Scholar 

  • de Matos AL, Franco LS, McFadden G (2020) Oncolytic viruses and the immune system: the dynamic duo. Mol Therapy Methods Clin Dev 17:349–358

    Article  Google Scholar 

  • de Pillis L, Radunskaya A (2003) A mathematical model of immune response to tumor invasion. In: Bathe KJ (ed) Computational fluid and solid mechanics. Elsevier, Hoboken, pp 1661–1668

    Google Scholar 

  • de Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumours: modeling, applications and biological interpretations. J Theor Biol 238(4):841–862

    Article  MATH  Google Scholar 

  • de Pillis LG, Caldwell T, Sarapata E, Williams H (2013) Mathematical modeling of the regulatory T cell effects on renal cell carcinoma treatment. Discrete Contin Dyn Syst Ser 18(4):915–943

    MathSciNet  MATH  Google Scholar 

  • den Driessche PV, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Diaz RM, Galivo F, Kottke T, Wongthida P, Qiao J, Thompson J et al (2007) Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67(6):2840–2848

    Article  Google Scholar 

  • Diekmann O, van Giles S, Lunel S (1995) Delay equations. Springer, New York

    Book  Google Scholar 

  • Dingli D, Cascino MD, Josić K, Russell SJ, Bajzer Ž (2006) Mathematical modeling of cancer radiovirotherapy. Math Biosci 199(1):55–78

    Article  MathSciNet  MATH  Google Scholar 

  • Donnelly OG, Errington-Mais F, Steele L, Hadac E, Jennings V, Scott K et al (2013) Measles virus causes immunogenic cell death in human melanoma. Gene Therapy 20(1):7–15

    Article  Google Scholar 

  • Dritschel H, Waters SL, Roller A, Byrne HM (2018) A mathematical model of cytotoxic and helper T cell interactions in a tumour microenvironment. Lett Biomath 5(sup1):S36–S68

    Article  MathSciNet  Google Scholar 

  • Eftimie R, Eftimie G (2018) Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics. Lett Biomath 5(sup1):S6–S35

    Article  MathSciNet  Google Scholar 

  • Eftimie R, Eftimie G (2019) Investigating macrophages plasticity following tumour-immune interactions during oncolytic therapies. Acta Biotheoretica 67(4):321–359

    Article  Google Scholar 

  • Eftimie R, Hamam H (2017) Modelling and investigation of the CD\(4{+}\) T cells: macrophages paradox in melanoma immunotherapies. J Theor Biol 420:82–104

    Article  MATH  Google Scholar 

  • Eissa IR, Bustos-Villalobos I, Ichinose T, Matsumura S, Naoe Y, Miyajima N et al (2018) The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Cancers 10(10):356

    Article  Google Scholar 

  • Elsedawy NB, Nace RA, Russell SJ, Schulze AJ (2020) Oncolytic activity of targeted picornaviruses formulated as synthetic infectious RNA. Mol Therapy Oncolytics 17:484–495

    Article  Google Scholar 

  • El-Shemi AG, Ashshi AM, Na Y, Li Y, Basalamah M, Al-Allaf FA et al (2016) Combined therapy with oncolytic adenoviruses encoding TRAIL and IL-12 genes markedly suppressed human hepatocellular carcinoma both in vitro and in an orthotopic transplanted mouse model. J Exp Clin Cancer Res 35(1):74

    Article  Google Scholar 

  • El-Shemi AG, Ashshi AM, Oh E, Jung BK, Basalamah M, Alsaegh A et al (2018) Efficacy of combining ING\(4\) and TRAIL genes in cancer-targeting gene virotherapy strategy: first evidence in preclinical hepatocellular carcinoma. Gene Therapy 25(1):54

    Google Scholar 

  • Ennis MK, Hu C, Naik SK, Hallak LK, Peng KW, Russell SJ et al (2010) Mutations in the stalk region of the measles virus hemagglutinin inhibit syncytium formation but not virus entry. J Virol 84(20):10913–10917

    Article  Google Scholar 

  • Everts B, van der Poel HG (2005) Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Therapy 12(2):141–161

    Article  Google Scholar 

  • Farnault L, Sanchez C, Baier C, Treut TL, Costello RT (2012) Hematological malignancies escape from NK cell innate immune surveillance: mechanisms and therapeutic implications. Clin Dev Immunol 2012:1–8

    Article  Google Scholar 

  • Ferreira TB, Alves PM, Gonçalves DG, Carrondo M (2005) Effect of MOI and medium composition on adenovirus infection kinetics. In: Godia F, Fussenegger M (eds) Animal cell technology meets genomics. Springer, Dordrecht, pp 329–332

    Chapter  Google Scholar 

  • Filley AC, Dey M (2017) Immune system, friend or foe of oncolytic virotherapy? Front Oncol 7:106

    Article  Google Scholar 

  • Fionda C, Stabile H, Molfetta R, Soriani A, Bernardini G, Zingoni A et al (2018) Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treat Rev 70:255–264

    Article  Google Scholar 

  • Freeman BE, Rauè HP, Hill AB, Slifka MK (2015) Cytokine-mediated activation of NK cells during viral infection. J Virol 89(15):7922–7931

    Article  Google Scholar 

  • Freund-Brown J, Chirino L, Kambayashi T (2018) Strategies to enhance NK cell function for the treatment of tumors and infections. Crit Rev Immunol 38(2):105–130

    Article  Google Scholar 

  • Friberg S, Mattson S (1997) On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol 65(4):284–297

    Article  Google Scholar 

  • Friedman A, Lai X (2018) Combination therapy for cancer with oncolytic virus and checkpoint nhibitor: a mathematical model. PLoS ONE 13(2):e0192449

    Article  Google Scholar 

  • Friedman A, Tian JP, Fulci G, Chiocca EA, Wang J (2006) Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res 66(4):2314–2319

    Article  Google Scholar 

  • Gao J, Zhang W, Ehrhardt A (2020) Expanding the spectrum of adenoviral vectors for cancer therapy. Cancers 12(5):1139

    Article  Google Scholar 

  • Gatenby RA (2009) A change of strategy in the war on cancer. Nature 459(7246):508

    Article  Google Scholar 

  • Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G et al (2019) Multifunctional natural killer cell engagers targeting NKp\(46\) trigger protective tumor immunity. Cell 177(7):1701–1713

    Article  Google Scholar 

  • Gesundheit B, Ben-David E, Posen Y, Ellis R, Wollmann G, Schneider EM et al (2020) Effective treatment of glioblastoma multiforme with oncolytic virotherapy: a case-series. Front Oncol 10:702

    Article  Google Scholar 

  • Gross C, Hansch D, Gastpar R, Multhoff G (2003) Interaction of heat shock protein \(70\) peptide with NK cells involves the NK receptor CD\(94\). Biol Chem 384(2):267–279

    Google Scholar 

  • Gujar SA, Pan D, Marcato P, Garant KA, Lee PWK (2011) Oncolytic virus-initiated protective immunity against prostate cancer. Mol Therapy 19(4):797–804

    Article  Google Scholar 

  • Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G (2018) Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol 39:209–221

    Article  Google Scholar 

  • Guo ZS, Liu Z, Bartlett DL (2014) Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 4:74

    Article  Google Scholar 

  • Guo Y, Niu B, Tian JP (2019) Backward Hopf bifurcation in a mathematical model for oncolytic virotherapy with the infection delay and innate immune effects. J Biol Dyn 13(1):733–748

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen TF, Nederby L, Zedan AH, Mejlholm I, Henriksen JR, Steffensen KD et al (2019) Correlation between natural killer cell activity and treatment effect in patients with disseminated Cancer. Transl Oncol 12(7):968–972

    Article  Google Scholar 

  • Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC (2019) Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 18(9):689–706

    Article  Google Scholar 

  • Harris AL (2002) Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  Google Scholar 

  • Heidbuechel JPW, Abate-Daga D, Engeland CE, Enderling H (2020) Mathematical modeling of oncolytic virotherapy. In: Viruses Oncolytic (ed) Methods Mol Biol. Springer, New York, pp 301–320

    Google Scholar 

  • Hu W, Wang G, Huang D, Sui M, Xu Y (2019) Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol 10:1205

    Article  Google Scholar 

  • Iannello A, Raulet DH (2014) Immunosurveillance of senescent cancer cells by natural killer cells. Oncoimmunology 3(2):e27616

    Article  Google Scholar 

  • Iannello A, Thompson TW, Ardolino M, Marcus A, Raulet DH (2016) Immunosurveillance and immunotherapy of tumors by innate immune cells. Curr Opin Immunol 38:52–58

    Article  Google Scholar 

  • Jacobsen K, Russell L, Kaur B, Friedman A (2015) Effects of CCN1 and macrophage content on glioma virotherapy: a mathematical model. Bull Math Biol 77(6):1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Jenner AL, Yun CO, Yoon A, Coster ACF, Kim PS (2018) Modelling combined virotherapy and immunotherapy: strengthening the antitumour immune response mediated by IL-\(12\) and GM-CSF expression. Lett Biomath 5(sup1):S99–S116

    Article  Google Scholar 

  • Jenner AL, Kim PS, Frascoli F (2019) Oncolytic virotherapy for tumours following a Gompertz growth law. J Theor Biol 480:129–140

    Article  MathSciNet  MATH  Google Scholar 

  • Jost S, Altfeld M (2013) Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194

    Article  Google Scholar 

  • Jung MY, Offord CP, Ennis MK, Kemler I, Neuhauser C, Dingli D (2018) In vivo estimation of oncolytic virus populations within tumors. Cancer Res 78(20):5992–6000

    Article  Google Scholar 

  • Kemler I, Ennis MK, Neuhauser CM, Dingli D (2019) In vivo imaging of oncolytic measles virus propagation with single-cell resolution. Mol Therapy Oncolytics 12:68–78

    Article  Google Scholar 

  • Kim E, Kim JH, Shin HY, Lee H, Yang JM, Kim J et al (2003) Ad-mTERT-\(\Delta \)19, a conditional replication-competent adenovirus driven by the human telomerase promoter, selectively replicates in and elicits cytopathic effect in a cancer cell-specific manner. Hum Gene Therapy 14(15):1415–1428

    Article  Google Scholar 

  • Kim HS, Kim-Schulze S, Kim DW, Kaufman HL (2009) Host lymphodepletion enhances the therapeutic activity of an oncolytic vaccinia virus expressing \(4-1\)BB ligand. Cancer Res 69(21):8516–8525

    Article  Google Scholar 

  • Kim PS, Crivelli JJ, Choi IK, Yun CO, Wares JR (2015) Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics. Math Biosci Eng 12(4):841–858

    Article  MathSciNet  MATH  Google Scholar 

  • Kim Y, Yoo JY, Lee TJ, Liu J, Yu J, Caligiuri MA et al (2018) Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. PNAS 115(19):4927–4932

    Article  MathSciNet  MATH  Google Scholar 

  • Klose C, Berchtold S, Schmidt M, Beil J, Smirnow I, Venturelli S et al (2019) Biological treatment of pediatric sarcomas by combined virotherapy and NK cell therapy. BMC Cancer 9:1172

    Article  Google Scholar 

  • Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 56(2):295–321

    Article  MATH  Google Scholar 

  • Kwon OJ, Kang E, Kim S, Yun CO (2011) Viral genome DNA/lipoplexes elicit in situ oncolytic viral replication and potent antitumor efficacy via systemic delivery. J Control Release 155(2):317–325

    Article  Google Scholar 

  • Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N (2012) Natural killer cells: role in local tumor growth and metastasis. Biol Targets Therapy 6:73

    Google Scholar 

  • Lee YS, Kim JH, Choi KJ, Choi IK, Kim H, Choea S (2006) Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-\(12\) and B\(7-1\) in an immunocompetent murine model. Clin Cancer Res 12(19):5859–5868

    Article  Google Scholar 

  • Lemay CG, Rintoul JL, Kus A, Paterson JM, Garcia V, Falls TJ et al (2012) Harnessing oncolytic virus-mediated antitumor immunity in an infected cell vaccine. Mol Therapy 20(9):1791–1799

    Article  Google Scholar 

  • Leung EYL, Ennis DP, Kennedy PR, Hansell C, Dowson S, Farquharson M et al (2020) NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol Therapy Oncolytics 16:289–301

    Article  Google Scholar 

  • Li Y, Sun R (2018) Tumor immunotherapy: new aspects of natural killer cells. Chin J Cancer Res 30(2):173

    Article  Google Scholar 

  • Li X, Wang P, Li H, Du X, Liu M, Huang Q et al (2017) The efficacy of oncolytic adenovirus is mediated by T cell responses against virus and tumor in Syrian hamster model. Clin Cancer Res 23(1):239–249

    Article  Google Scholar 

  • Liu W, Dai E, Liu Z, Ma C, Guo ZS, Bartlett DL (2020) In Situ therapeutic cancer vaccination with an oncolytic virus expressing Membrane-Tethered IL-\(2\). Mol Therapy Oncolytics 17:350–360

    Article  Google Scholar 

  • Liu S, Galat V, Galat Y, Kyung Y, Lee A, Wainwright D et al (2021) NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 14(1):1–17

    Article  Google Scholar 

  • Macnamara C, Eftimie R (2015) Memory versus effector immune responses in oncolytic virotherapies. J Theor Biol 377:1–9

    Article  MATH  Google Scholar 

  • Mahasa KJ, Ouifki R, Eladdadi A, de Pillis L (2016) Mathematical model of tumor-immune surveillance. J Theor Biol 404:312–330

    Article  MathSciNet  MATH  Google Scholar 

  • Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R (2017) Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach. PLoS ONE 12(9):e0184347

    Article  Google Scholar 

  • Mahasa KJ, de Pillis L, Ouifki R, Eladdadi A, Maini P, Yoon AR et al (2020) Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Makaryan SZ, Finley SD (2020) Enhancing network activation in Natural Killer cells: predictions from in silico modeling. Integr Biol 12(5):109–121

    Article  Google Scholar 

  • Marchini A, Scott EM, Rommelaere J (2016) Overcoming barriers in oncolytic virotherapy with HDAC inhibitors and immune checkpoint blockade. Viruses 8(1):9

    Article  Google Scholar 

  • Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J (2019) Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-\(1\)PV case study. Front Immunol 10:1848

    Article  Google Scholar 

  • Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W et al (2014) Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122:91–128

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  MathSciNet  MATH  Google Scholar 

  • Marotel M, Hasim MS, Hagerman A, Ardolino M (2020) The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev 56:59–68

    Article  Google Scholar 

  • Martin NT, Bell JC (2018) Oncolytic virus combination therapy: killing one bird with two stones. Mol Therapy 26(6):1414–1422

    Article  Google Scholar 

  • Martin NT, Wrede C, Niemann J, Brooks J, Schwarzer D, Kühnel F et al (2012) Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing IL-\(12\) induce enhanced antitumor activity in liver tumor model. PLoS ONE 7(9):e44802

    Article  Google Scholar 

  • Meerani S, Yao Y (2010) Oncolytic viruses in cancer therapy. Eur J Sci Res 40(1):156–171

    Google Scholar 

  • Miyamoto S, Inoue H, Nakamura T, Yamada M, Sakamoto C, Urata Y et al (2012) Coxsackievirus B\(3\) is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res 72(10):2609–2621

    Article  Google Scholar 

  • Naik JD, Twelves CJ, Selby PJ, Vile RG, Chester JD (2011) Immune recruitment and therapeutic synergy: keys to optimizing oncolytic viral therapy? Clin Cancer Res 17(13):4214–4224

    Article  Google Scholar 

  • Navarro AG, Björklund AT, Chekenya M (2015) Therapeutic potential and challenge of natural killer cells in treatment of solid tumors. Front Immunol 6:202

    Google Scholar 

  • Nguyen A, Ho L, Wan Y (2014) Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front Oncol 4:145

    Article  Google Scholar 

  • Ogbomo H, Zemp FJ, Lun X, Zhang J, Stack D, Rahman MM et al (2013) Myxoma virus infection promotes NK lysis of malignant gliomas in vitro and in vivo. PLoS ONE 8(6):e66825

    Article  Google Scholar 

  • Oh S, Lee JH, Kwack K, Choi SW (2019) Natural killer cell therapy: a new treatment paradigm for solid tumors. Cancers 11(10):1534

    Article  Google Scholar 

  • Paiva LR, Binny C, Ferreira SC, Martins ML (2009) A multiscale mathematical model for oncolytic virotherapy. Cancer Res 69(3):1205–1211

    Article  Google Scholar 

  • Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12(6):500–508

    Article  Google Scholar 

  • Phan TA, Tian JP (2017) The role of the innate immune system in oncolytic virotherapy. Comput Math Methods Med

  • Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F (2008) Oncolytic viruses: a novel form of immunotherapy. Exp Rev Anticancer Therapy 8(10):1581–1588

    Article  Google Scholar 

  • Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA et al (2009) The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Therapy 20(10):1119–1132

    Article  Google Scholar 

  • Pucar D, Hricak H, Shukla-Dave A, Kuroiwa K, Drobnjak M, Eastham J et al (2007) Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 69(1):62–69

    Article  Google Scholar 

  • Rodriguez-Brenes IA, Hofacre A, Fan H, Wodarz D (2017) Complex dynamics of virus spread from low infection multiplicities: implications for the spread of oncolytic viruses. PLOS Comput Biol 13(5):e1005241

    Article  Google Scholar 

  • Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30(7):658–670

    Article  Google Scholar 

  • Russell L, Peng KW, Russell SJ, Diaz RM (2019) Oncolytic viruses: priming time for cancer immunotherapy. BioDrugs 33:485–501

    Article  Google Scholar 

  • Samson A, Bentham MJ, Scott K, Nuovo G, Bloy A, Appleton E et al (2018) Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer. Gut 67(3):562–573

    Article  Google Scholar 

  • Schatzman M (2002) Numerical analysis: a mathematical introduction. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Shi T, Song X, Wang Y, Liu F, Wei J (2020) Combining oncolytic viruses with cancer immunotherapy: establishing a new generation of cancer treatment. Front Immunol 11:683

    Article  Google Scholar 

  • Sobol PT, Boudreau JE, Stephenson K, Wan Y, Lichty BD, Mossman KL (2011) Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Therapy 19(2):335–344

    Article  Google Scholar 

  • Somma SD, Iannuzzi CA, Passaro C, Forte IM, Iannone R, Gigantino V et al (2019) The oncolytic virus \(dl922-947\) triggers immunogenic cell death in mesothelioma and reduces xenograft growth. Front Oncol 9:564

    Google Scholar 

  • Storey KM, Lawler SE, Jackson TL (2020) Modeling oncolytic viral therapy, immune checkpoint inhibition, and the complex dynamics of innate and adaptive immunity in glioblastoma treatment. Front Physiol 11:151

    Article  Google Scholar 

  • Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 6(1):16–32

    Article  Google Scholar 

  • Tsygvintsev A, Marino S, Kirschner DE (2012) A mathematical model of gene therapy for the treatment of cancer, in mathematical models and methods in biomedicine. Springer, Berlin

    MATH  Google Scholar 

  • Vähä-Koskela M, Hinkkanen A (2014) Tumor restrictions to oncolytic virus. Biomedicines 2(2):163–194

    Article  Google Scholar 

  • Vähä-Koskela MJV, Heikkilä JE, Hinkkanen AE (2007) Oncolytic viruses in cancer therapy. Cancer Lett 254(2):178–216

    Article  Google Scholar 

  • Valle ASD, Anel A, Naval J, Marzo I (2019) Immunogenic cell death and immunotherapy of multiple myeloma. Front Cell Dev Biol 7:50

    Article  Google Scholar 

  • van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW (2018) Critical interactions between immunogenic cancer cell death, oncolytic viruses, and the immune system define the rational design of combination immunotherapies. J Immunol 200(2):450–458

    Article  Google Scholar 

  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510

    Article  Google Scholar 

  • Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12(4):239–252

    Article  Google Scholar 

  • Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, Karmele EP et al (2016) Roles of natural killer cells in antiviral immunity. Curr Opin Virol 16:15–23

    Article  Google Scholar 

  • Walker R, Enderling H (2016) From concept to clinic: mathematically informed immunotherapy. Curr Probl Cancer 40(1):68–83

    Article  Google Scholar 

  • Wang F, Lau JKC, Yu J (2020) The role of natural killer cell in gastrointestinal cancer: killer or helper. Oncogene 40:717–730

    Article  Google Scholar 

  • Watzl C, Sternberg-Simon M, Urlaub D, Mehr R (2012) Understanding natural killer cell regulation by mathematical approaches. Front Immunol 3:359

    Article  Google Scholar 

  • Wodarz D (2001) Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res 61(8):3501–3507

    Google Scholar 

  • Wodarz D (2013) Computational modeling approaches to studying the dynamics of oncolytic viruses. Math Biosci Eng 10(3):939–957

    Article  MathSciNet  MATH  Google Scholar 

  • Wodarz D, Sierro S, Klenerman P (2007) Dynamics of killer T cell inflation in viral infections. J R Soc Interface 4(14):533–543

    Article  Google Scholar 

  • Wodarz D, Hofacre A, Lau JW, Sun Z, Fan H, Komarova NL (2012) Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches. PLoS Comput Biol 8(6):e1002547

    Article  Google Scholar 

  • Workenhe ST, Mossman KL (2014) Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol Therapy 22(2):251–256

    Article  Google Scholar 

  • Workenhe ST, Simmons G, Pol JG, Lichty BD, Halford WP, Mossman KL (2014) Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy. Mol Therapy 22(1):123–131

    Article  Google Scholar 

  • Yoo JY, Jaime-Ramirez AC, Bolyard C, Dai H, Nallanagulagari T, Wojton J et al (2016) Bortezomib treatment sensitizes oncolytic HSV-\(1\)-treated tumors to NK cell immunotherapy. Clin Cancer Res 22(21):5265–5276

    Article  Google Scholar 

  • Yoon AR, Hong J, Li Y, Shin HC, Lee H, Kim HS et al (2019) Mesenchymal stem cell-mediated delivery of an oncolytic adenovirus enhances antitumor efficacy in hepatocellular carcinoma. Cancer Res 79(17):4503–4514

    Article  Google Scholar 

  • Zhang Q, Liu F (2020) Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis 11(6):1–11

    Article  Google Scholar 

  • Zhang KJ, Zhang J, Wu YM, Qian J, Liua XJ, Yan LC et al (2012) Complete eradication of hepatomas using an oncolytic adenovirus containing AFP promoter controlling E\(1\)A and an E\(1\)B deletion to drive IL-\(24\) expression. Cancer Gene Therapy 19(9):619–629

    Article  Google Scholar 

  • Zhang J, Tai LH, Ilkow CS, Alkayyal AA, Ananth AA, de Souza CT et al (2014) Maraba MG1 virus enhances natural killer cell function via conventional dendritic cells to reduce postoperative metastatic disease. Mol Therapy 22(1):1320–1332

    Article  Google Scholar 

  • Zi Z (2011) Sensitivity analysis approaches applied to systems biology models. IET Syst Biol 5(6):336–346

    Article  Google Scholar 

  • Zurakowski R, Wodarz D (2007) Model-driven approaches for in vitro combination therapy using ONYX-O\(15\) replicating oncolytic adenovirus. J Theor Biol 245(1):1–8

    Article  MATH  Google Scholar 

Download references

Acknowledgements

NSS, KJM and RO acknowledge the support from the DST/NRF SARChI Chair in Mathematical Models and Methods in Biosciences and Bioengineering at the University of Pretoria during the 2019 October Workshop on Trends in Modeling and Analysis in Life Sciences, where the ideas and design of this study were conceived. LdeP thanks Harvey Mudd College for supporting a sabbatical leave that allowed her to engage in this research. All authors are thankful to anonymous reviewers for their extraordinary in-depth reviews and insightful suggestions that helped to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noma Susan Senekal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Well-Posedness

The proposed model in this study describes the temporal evolution of cells and virus populations, and therefore, the cell concentrations should remain nonnegative and bounded. Here, we establish the well-posedness of the immune-free submodel (Eqs. (3.1.1)–(3.1.3)) and its proofs. We should emphasize that the nonnegativity and boundedness of the immunocompetent model directly follow from the same type arguments presented herein, and hence, we shall omit their proofs. We also provide a brief outline for extending the solutions to our immunocompetent system (see Eqs. (2.1.1)–(2.1.4)). Note that when solving for one state variable, for simplicity, other state variables appearing in the equation are treated as constants.

Theorem A.1

Well-Posedness

  1. (i)

    (nonnegativity of solutions) Given that the nonnegative initial conditions \((T_{u0}> 0, T_{i0}> 0, V_0 > 0)\), the corresponding solutions \((T_{u}(t), T_{i}(t), V(t))\) will remain nonnegative for all \(t \in [0, \infty )\).

  2. (ii)

    (boundedness of solutions and invariant region) The model system is bounded and the invariant region is given by \({\varvec{\Omega }}_{\mathbf{V}} = \{(T_{u}, T_{i}, V) \in \mathbb {R}_{+}^3 \mid \ 0 \hbox {\,\,\char 054\,\,}T_{u} \hbox {\,\,\char 054\,\,}\theta _{T},\ 0 \hbox {\,\,\char 054\,\,}T_{i} \hbox {\,\,\char 054\,\,}\frac{1}{\delta } \beta T_{u} V,\ 0 \hbox {\,\,\char 054\,\,}V \hbox {\,\,\char 054\,\,}\frac{1}{\gamma }(\mu _{v}(t) + b T_{i})\}\). Moreover, the domain \({\varvec{\Omega }}_{\mathbf{V}}\) is positively invariant for the model and therefore biologically meaningful for the cell concentrations and regarded as a “global” domain. The corresponding dimensionless system, Eqs. (3.2.6)–(3.2.8), is valid under the following positively invariant domain: \(\varvec{\Omega }_{\mathbf{V1}} = \{(T_{u}, T_{i}, V) \in \mathbb {R}_{+}^3 \mid \ T_{u} \ge 0,\ T_{i} \ge 0,\ 0 \hbox {\,\,\char 054\,\,}T_{u} + T_{i} \hbox {\,\,\char 054\,\,}1,\ V \ge 0\}.\)

  3. (iii)

    (existence and uniqueness) For any nonnegative initial values of the model state variables, a solution to the model exists and is unique in the positively invariant domain \(\varvec{\Omega }_{\mathbf{V}}\) for all time \(t > 0\).

1.1 (i) Nonnegativity of Solutions

Proof

Considering Eq. (3.1.1), we have a Bernoulli differential equation. We now rewrite Eq. (3.1.1) as \(\frac{\mathrm{d}T_{u}}{\mathrm{d}t} = \alpha T_{u} - \frac{\alpha T_{u}^2}{\theta _{T}} - \frac{\alpha T_{u} T_{i}}{\theta _{T}} - \beta T_{u} V = \left( \alpha - \frac{\alpha T_{i}}{\theta _{T}} - \beta V\right) T_{u} - \frac{\alpha T_{u}^2}{\theta _{T}}.\) Thus, the Bernoulli standard form of Eq. (3.1.1) is \(\frac{\mathrm{d}T_{u}}{\mathrm{d}t} + \left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) T_{u} = -\frac{\alpha T_{u}^2}{\theta _{T}}\).

Here, \(n = 2\), \(P(t) = \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \), \(Q(t) = -\frac{\alpha }{\theta _{T}}\). The integrating factor is \(I(t) = e^{\int {(1 - 2)\left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) }dt} = e^{ - \left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) t}. \) The solution is therefore given by: \(T_{u}^{-1} = e^{\left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) t}\left[ \int {(-1)\left( -\frac{\alpha }{\theta _{T}}\right) e^{ - \left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) t}}dt + c\right] = e^{\left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) t}\left[ \frac{\alpha }{\theta _{T}}\int {e^{ - \left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) t}}dt + c\right] = e^{nt}\left[ -\frac{\alpha }{\theta _{T} n} e^{-nt} + c\right] ,\quad \text {where} \quad n = \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha = -\frac{\alpha }{\theta _{T} n} + ce^{nt}. \)

At \(t = 0\), \(T_{u} = T_{u0}\), solving for c we obtain \(c = T_{u0} + \frac{\alpha }{\theta _{T} n}\). Now substituting c in the equation for \(T_{u}^{-1}\) above, we get \(T_{u}^{-1} = \frac{(\theta _{T} n T_{u0} + \alpha )e^{nt} - \alpha }{\theta _{T} n}\), and thus,

$$\begin{aligned} T_{u}&= \frac{\theta _{T} n}{\left( \theta _{T} n T_{u0} + \alpha \right) e^{nt} - \alpha }\\&= \frac{\theta _{T} \left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) }{\left( \theta _{T} T_{u0} \left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) + \alpha \right) e^{\left( \beta V + \frac{\alpha T_{i}}{\theta _{T}} - \alpha \right) t} - \alpha } >0. \end{aligned}$$

Considering Eq. (3.1.2), we have a first-order ODE which can easily be written as \(\frac{\mathrm{d}T_{i}}{\mathrm{d}t} + \delta T_{i} = \beta T_{u} V\). Using the following integrating factor \(I(t) = e^{\int {\delta }dt} = e^{\delta t},\) and solving we get, \(T_{i} = \frac{1}{\delta } \beta T_{u} V + ce^{-\delta t}.\) At \(t = 0\), \(T_{i}(t) = 0\), solving for c we obtain \(c = -\frac{1}{\delta } \beta T_{u} V. \) Substituting c in the equation of \(T_{i}\) above, we get \(T_{i} = \frac{1}{\delta } \beta T_{u} V - \frac{1}{\delta } \beta T_{u} V e^{-\delta t} = \frac{1}{\delta } \beta T_{u} V \left( 1 - e^{-\delta t}\right) > 0.\)

Similarly, considering Eq. (3.1.3), we have a first-order ODE which can be rewritten as \(\frac{\mathrm{d}V}{\mathrm{d}t} + \gamma V = \mu _{v}(t) + b T_{i}\). The integrating factor is given by \(I(t) = e^{\int {\gamma }dt} = e^{\gamma t},\) which is used to solve for \(V = \frac{1}{\gamma }\left( \mu _{v}(t) + b T_{i}\right) + ce^{-\gamma t}.\) At \(t = 0\), \(V(t) = 0\), solving for c we obtain \(c = -\frac{1}{\gamma }(\mu _{v}(t) + b T_{i}).\) Substituting c in the equation of V above, we get \(V = \frac{1}{\gamma }(\mu _{v}(t) + b T_{i})(1 - e^{-\gamma t}) > 0.\)

1.2 (ii) Boundedness of Solutions and Invariant Region

In this section, we discuss the boundedness of the solutions of our model.

For the uninfected population, Eq. (3.1.1) can be rewritten as

$$\begin{aligned} \frac{\mathrm{d}T_{u}}{\mathrm{d}t} = \alpha T_{u} - \frac{\alpha T_{u}^2}{\theta _{T}} - \frac{\alpha T_{u} T_{i}}{\theta _{T}} - \beta T_{u} V. \end{aligned}$$

From which we have

$$\begin{aligned} \frac{\mathrm{d}T_{u}}{\mathrm{d}t}&\hbox {\,\,\char 054\,\,}\alpha T_{u} - \frac{\alpha T_{u}^2}{\theta _{T}}\nonumber \\&= \frac{\theta _{T} \alpha T_{u} - \alpha T_{u}^2}{\theta _{T}}\nonumber \\&\quad \implies \frac{\theta _{T} dT_{u}}{\theta _{T} \alpha T_{u} - \alpha T_{u}^2} \hbox {\,\,\char 054\,\,}dt\nonumber \\&\quad \frac{\theta _{T} dT_{u}}{\alpha T_{u}(\theta _{T} - T_{u})} \hbox {\,\,\char 054\,\,}dt \end{aligned}$$
(A.2.1)

Integrating the left-hand side of Eq. (A.2.1) using partial fractions, we have

$$\begin{aligned} \frac{1}{T_{u}(\theta _{T} - T_{u})}&= \frac{A}{T_{u}} + \frac{B}{\theta _{T} - T_{u}} \end{aligned}$$

Comparing coefficients and solving for A and B, we get \(A = \frac{1}{\theta _{T}}\) and \(B = \frac{1}{\theta _{T}}\). So

$$\begin{aligned} \frac{1}{T_{u}(\theta _{T} - T_{u})} = \frac{1}{\theta _{T} T_{u}} + \frac{1}{\theta _{T} (\theta _{T} - T_{u})}. \end{aligned}$$

Integrating the above yields

$$\begin{aligned} \frac{1}{\theta _{T}} (ln(T_{u}) - ln(\theta _{T} - T_{u})). \end{aligned}$$

So, the integral for Eq. (A.2.1) is

$$\begin{aligned} \frac{\theta _{T}}{\alpha }\left( \frac{ln(T_{u})}{\theta _{T}} - \frac{ln(\theta _{T} - T_{u})}{\theta _{T}}\right) \hbox {\,\,\char 054\,\,}t + c. \end{aligned}$$

At \(t = 0\), \(T_{u} = T_{u0}\)

$$\begin{aligned} c = \frac{\theta _{T}}{\alpha }\left( \frac{ln(T_{u0})}{\theta _{T}} - \frac{ln(\theta _{T} - T_{u0})}{\theta _{T}}\right) , \end{aligned}$$

so

$$\begin{aligned} \frac{\theta _{T}}{\alpha }\left( \frac{ln(T_{u})}{\theta _{T}} - \frac{ln(\theta _{T} - T_{u})}{\theta _{T}}\right)&\hbox {\,\,\char 054\,\,}t + \frac{\theta _{T}}{\alpha }\left( \frac{ln(T_{u0})}{\theta _{T}} - \frac{ln(\theta _{T} - T_{u0})}{\theta _{T}}\right) \\ \frac{1}{\alpha }(ln(T_{u}) - ln(\theta _{T} - T_{u}))&\hbox {\,\,\char 054\,\,}t + \frac{1}{\alpha }(ln(T_{u0}) - ln(\theta _{T} - T_{u0}))\\ ln(T_{u}) - ln(\theta _{T} - T_{u})&\hbox {\,\,\char 054\,\,}\alpha t + ln(T_{u0}) - ln(\theta _{T} - T_{u0})\\ ln\left( \frac{T_{u}}{\theta _{T} - T_{u}}\right)&\hbox {\,\,\char 054\,\,}\alpha t + ln\left( \frac{T_{u0}}{\theta _{T} - T_{u0}}\right) \\ ln\left( \frac{T_{u}}{\theta _{T} - T_{u}}\right) - ln\left( \frac{T_{u0}}{\theta _{T} - T_{u0}}\right)&\hbox {\,\,\char 054\,\,}\alpha t\\ ln\left( \frac{T_{u}(\theta _{T} - T_{u0})}{T_{u0}(\theta _{T} - T_{u})}\right)&\hbox {\,\,\char 054\,\,}\alpha t\\ \frac{T_{u}(\theta _{T} - T_{u0})}{T_{u0}(\theta _{T} - T_{u})}&\hbox {\,\,\char 054\,\,}e^{\alpha t}\\ T_{u}(\theta _{T} - T_{u0})&\hbox {\,\,\char 054\,\,}e^{\alpha t} T_{u0}(\theta _{T} - T_{u})\\&= e^{\alpha t}T_{u0}\theta _{T} - e^{\alpha t}T_{u}T_{u0}\\ T_{u}(\theta _{T} - T_{u0}) + e^{\alpha t}T_{u}T_{u0}&\hbox {\,\,\char 054\,\,}e^{\alpha t}T_{u0}\theta _{T}\\ T_{u}((\theta _{T} - T_{u0}) + e^{\alpha t}T_{u0})&\hbox {\,\,\char 054\,\,}e^{\alpha t}T_{u0}\theta _{T}\\ T_{u}&\hbox {\,\,\char 054\,\,}\frac{e^{\alpha t}T_{u0}\theta _{T}}{\frac{e^{\alpha t}}{e^{\alpha t}}\left( \theta _{T} - T_{u0}\right) + e^{\alpha t}T_{u0}}\\&= \frac{T_{u0} \theta _{T}}{\frac{(\theta _{T} - T_{u0})}{e^{\alpha t}} + T_{u0}}. \end{aligned}$$

Taking the limit supremum on both sides, we have

$$\begin{aligned} \limsup \limits _{t\rightarrow \infty } T_{u}&\hbox {\,\,\char 054\,\,}\limsup \limits _{t\rightarrow \infty } \frac{T_{u0} \theta _{T}}{\frac{(\theta _{T} - T_{u0})}{e^{\alpha t}} + T_{u0}}\\&= \frac{T_{u0}\theta _{T}}{T_{u0}}\\&= \theta _{T} , \ \text {which is the upper bound for } T_{u}. \end{aligned}$$

Now, considering the infected tumor cell population, rewriting Eq. (3.1.2) leads to

$$\begin{aligned} \frac{\mathrm{d}T_{i}}{\mathrm{d}t} + \delta T_{i} = \beta T_{u} V, \end{aligned}$$

which is now in first order linear standard form and its solution is given by

$$\begin{aligned} T_{i} = \frac{1}{\delta } \beta T_{u} V \left( 1 - e^{-\delta t}\right) . \end{aligned}$$

Taking limits on both sides of the above equation,

$$\begin{aligned} \limsup \limits _{t\rightarrow \infty } T_{i}&= \lim _{t\rightarrow \infty } \frac{1}{\delta } \beta T_{u} V \left( 1 - e^{-\delta t}\right) \\&\hbox {\,\,\char 054\,\,}\lim _{t\rightarrow \infty } \frac{1}{\delta } \beta T_{u} V\\&= \frac{1}{\delta } \beta T_{u} V, \ \text {Which is the upper bound fot } T_{i}. \end{aligned}$$

For the virus population, Eq. (3.1.3) can be rewritten as

$$\begin{aligned} \frac{\mathrm{d}V}{\mathrm{d}t} + \gamma V = \mu _{v}(t) + b T_{i}, \end{aligned}$$

which gives rise to the solution

$$\begin{aligned} V = \frac{1}{\gamma }(\mu _{v}(t) + b T_{i})\left( 1 - e^{-\gamma t}\right) . \end{aligned}$$

Taking limits on both sides of the above equation,

$$\begin{aligned} \limsup \limits _{t\rightarrow \infty } V&= \lim _{t\rightarrow \infty } \frac{1}{\gamma }(\mu _{v}(t) + b T_{i})\left( 1 - e^{-\gamma t}\right) \\&\hbox {\,\,\char 054\,\,}\lim _{t\rightarrow \infty } \frac{1}{\gamma }(\mu _{v}(t) + b T_{i})\\&= \frac{1}{\gamma }(\mu _{v}(t) + b T_{i}), \ \text {which is the upper bound for } V. \end{aligned}$$

We can therefore conclude that the system above is bounded and the invariant region is given by

$$\begin{aligned} \varvec{\Omega }_{\mathbf {V}} \!=\! \left\{ (T_{u}, T_{i}, V) \in \mathbb {R}_{+}^3 \mid \ 0 \!\hbox {\,\,\char 054\,\,}\! T_{u} \!\hbox {\,\,\char 054\,\,}\! \theta _{T},\ 0 \!\hbox {\,\,\char 054\,\,}\! T_{i}\!\hbox {\,\,\char 054\,\,}\! \frac{1}{\delta } \beta T_{u} V,\ 0 \!\hbox {\,\,\char 054\,\,}\! V \!\hbox {\,\,\char 054\,\,}\! \frac{1}{\gamma }(\mu _{v}(t) \!+\! b T_{i})\right\} . \end{aligned}$$

Note that \(\varvec{\Omega }_{\mathbf{V}}\) is a positively invariant domain for the system (Eqs. (3.1.1)–(3.1.3)). Moreover, notice also that \(0 \le T_{u}(t) + T_{i}(t) \le \theta _{T}\) for \(t > 0\). This shows that the total tumor burden \(T_{u}(t) + T_{i}(t)\) cannot exceed the carrying capacity \(\theta _{T}\). This proof is analogous to the proof in Appendix A of Dingli et al. (2006). \(\varvec{\Omega }_{\mathbf{V}}\) is also a biologically feasible region for the state variables. Hence, we shall also regard this region as a “global” domain.

1.3 (iii) Existence and Uniqueness of Solutions

Proof

Since the right-hand side of system is \(\mathbf {C}^{1}\) (class of continuously differentiable functions) satisfies the properties of locally Lipschitz functions, then the existence and uniqueness of solutions of the system are ascertained by the Cauchy–Lipschitz theorem (Diekmann et al. 1995; Schatzman 2002).

For the immunocompetent model (see Eqs. (2.1.1)–(2.1.4)), it is not difficult to establish that the solutions will remain nonnegative for \(t\ge 0\) since \(\frac{\mathrm{d}N}{\mathrm{d}t} \ge 0\) whenever \(N(t) = 0\) and \(N(t) \ge 0\), Also it can easily be verified that N is bounded by \(0 \le N \le \frac{s_N}{d}\). Thus, we define the invariant region for the system (Eqs. (2.1.1)–(2.1.4)) as

$$\begin{aligned}&\varvec{\Omega }_{\mathbf {VN}} = \left\{ (T_{u},T_{i},V,N) \in \mathbb {R}_{+}^4 \mid \ 0 \hbox {\,\,\char 054\,\,}T_{u} \hbox {\,\,\char 054\,\,}\theta _{T},\ 0\hbox {\,\,\char 054\,\,}T_{i} \right. \\&\left. \hbox {\,\,\char 054\,\,}\frac{1}{\delta } \beta T_{u} V,\ 0 \hbox {\,\,\char 054\,\,}V \hbox {\,\,\char 054\,\,}\frac{1}{\gamma }(\mu _{v}(t) + b T_{i}),\ 0 \hbox {\,\,\char 054\,\,}N \hbox {\,\,\char 054\,\,}\frac{s_N}{d}\right\} . \end{aligned}$$

Hence, the existence and uniqueness of solutions theorem for our immunocompetent model are preserved. Note that the right-hand side of our immunocompetent system is \(\mathbf {C}^{1}\) on \(\mathbb {R}_{+}^4\).

Stability Theorems of the Steady State \({\mathbf {SS}}_{\mathbf{1}}\)

1.1 Proof of Theorem 2 (Local Stability)

Proof

We note that \(s_{1} = -r <0\) and \(s_{2} = \frac{1}{2}(-\omega _{v} - 1 - \sqrt{\left( \omega _{v}-1\right) ^2 + 4\lambda _{v}\rho }) < 0\), for all nonnegative parameter values, and \(s_{3} = \frac{1}{2}(-\omega _{v} - 1 + \sqrt{\left( \omega _{v}-1\right) ^2 + 4\lambda _{v}\rho })\) can either be negative, positive and zero. If \(\sqrt{\left( \omega _{v}-1\right) ^2 + 4\lambda _{v}\rho } < 1 + \omega _{v}\), then \(s_{3} < 0\). Since \(1 + \omega _{v}\) is positive, then it follows that \((\omega _{v}-1)^2 + 4\lambda _{v}\rho < (1+\omega _{v})^2\), which is equivalent to \(\rho < \frac{\omega _{v}}{\lambda _{v}}\). Thus, when \(\rho < \frac{\omega _{v}}{\lambda _{v}}\), all three eigenvalues (\(s_{1}, s_{2}\) and \(s_{3}\)) are negative. Hence, \(\mathbf {SS_{1}}\) is locally asymptotically stable. Equivalently, since \(P(s)= s^{3} + \left( r + \omega _{v} + 1\right) s^{2} + \left( - \lambda _{v} \rho + r \omega _{v} + r + \omega _{v}\right) s - r \lambda _{v} \rho + r \omega _{v} = s^{3}+a_{2}s^{2}+a_{1}s+a_{0}=0\), where \(a_{2}=\omega _{v}+r+1, \ a_{1}=\omega _{v}r+r+\omega _{v}-\rho \lambda _{v}, \ a_{0}=\omega _{v}r-\lambda _{v}\rho r\), we notice that \(a_{2}>0\) and that if \(\mathcal {R}_{0}<1\) then \(a_{1}>0,a_{0}>0\) and \(a_{1}a_{2}-a_{0}>0\). Hence, by the Routh–Hurwitz criterion (Zi 2011; Harris 2002), we deduce that \(\mathbf {SS_{1}}\) is locally asymptotically stable. Similarly, whenever \(\rho > \frac{\omega _{v}}{\lambda _{v}}\), then \(\sqrt{\left( \omega _{v}-1\right) ^2 + 4\lambda _{v}\rho } > 1+\omega _{v}\). This implies that \(s_{3} > 0\). Hence, \(\mathbf {SS_{1}}\) is unstable.

1.2 Proof of Theorem 3 (Global Stability)

Before we provide a detailed proof of this theorem, note that given the positively invariant domain \(\varvec{\Omega }_{\mathbf{V1}}\), the steady-state solution \(\mathbf {SS_{1}}\) should be globally asymptotically stable in the whole domain \(\varvec{\Omega }_{\mathbf{V}}\). To prove this, we first construct a Lyapunov function based on a specified range of the parameter \(\rho \). We simplify the model by the translating the state variables as follows: \(T_{u} = 1 - \hat{T}_{u},\ T_{i} = \hat{T}_{i}\), and \(V = \hat{V}\). For notation convenience, we drop the hats over the state variables and have the following system:

$$\begin{aligned} \frac{\mathrm{d}T_{u}}{\mathrm{d}t}&= -rT_{u} + rT_{i} + rT_{u}^2 + \lambda _{v}V - rT_{u}T_{i} - \lambda _{v}T_{u}V \end{aligned}$$
(B.2.1)
$$\begin{aligned} \frac{\mathrm{d}T_{i}}{\mathrm{d}t}&= \lambda _{v}V - \lambda _{v}T_{u}V - T_{i} \end{aligned}$$
(B.2.2)
$$\begin{aligned} \frac{\mathrm{d}V}{\mathrm{d}t}&= \rho T_{i} - \omega _{v}V, \end{aligned}$$
(B.2.3)

and the invariant domain \(\varvec{\Omega }_{\mathbf{V1}}\) is translated to

$$\begin{aligned} \varvec{\Omega }_{\mathbf{V2}} = \left\{ (T_{u}, T_{i}, V) \in \mathbb {R}_{+}^3 \mid \ T_{u} \ge 0,\ T_{i} \ge 0,\ 0 \hbox {\,\,\char 054\,\,}T_{u} - T_{i} \hbox {\,\,\char 054\,\,}1,\ V \ge 0\right\} . \end{aligned}$$
(B.2.4)

Now we give the proof of Theorem 3:

Proof

Given the nonnegative initial conditions \((T_{u0},T_{i0},V_{0})\) in \(\varvec{\Omega }_{\mathbf{V2}}\), then by Theorem A.1 and A.3, the corresponding solutions of the dimensionless state variable satisfy \(0 \le T_{u}(t) \le 1,\ 0 \le T_{i}(t) \le 1,\) and \(V(t) \ge 0\). It suffices to show that if \(T_{i}(t)\) and V(t) approach zero, then \(T_{u}(t)\) also approaches zero. When \(0< \rho < 1\), we define a Lyapunov function

$$\begin{aligned} G\left( T_{u},T_{i},V\right) = \frac{1}{2}\lambda _{v}\rho \omega _{v}T_{i}^2 + \lambda _{v}^2\rho T_{i}V + \frac{1}{2}\lambda _{v}^2 V^2 \end{aligned}$$

Using Theorem A.1, it is easy to check that \(G\left( T_{u},T_{i},V\right) > 0\). The orbital derivative is given by

$$\begin{aligned} \dot{G}\left( T_{u},T_{i},V\right)&= \lambda _{v}\rho \omega _{v} T_{i}\dot{T}_{i} + \lambda _{v}^2\rho \dot{T}_{i}V + \lambda _{v}^2\rho \dot{V}T_{i} + \lambda _{v}^2 V\dot{V} \\&= \lambda _{v}\rho \omega _{v} T_{i}\left( \lambda _{v}V - \lambda _{v}T_{u}V - T_{i}\right) + \lambda _{v}^2\rho \left( \lambda _{v}V - \lambda _{v}T_{u}V - T_{i}\right) V \\&\ \ \ + \lambda _{v}^2\rho \left( \rho T_{i} - \omega _{v}V\right) T_{i} + \lambda _{v}^2 V\left( \rho T_{i} - \omega _{v}V\right) \\&= \lambda _{v}\rho \left( \lambda _{v}\rho - \omega _{v}\right) T_{i}^2 - \lambda _{v}^2\rho \omega _{v} T_{i}T_{u}V + \lambda _{v}^2\left( \lambda _{v}\rho - \omega _{v}\right) V^2 - \lambda _{v}^3\rho T_{u}V^2 \\&\ \ \ + \lambda _{v}\omega _{v}\left( \rho - 1\right) T_{i}V. \end{aligned}$$

Since \(\rho < \frac{\omega _{v}}{\lambda _{v}}\), which means, \(\lambda _{v}\rho - \omega _{v} < 0\), and \(0< \rho < 1\), implies that \(\rho - 1 < 0\), then it follows that \(\dot{G}\left( T_{u},T_{i},V\right) < 0\). Therefore, using this Lyapunov function, we have \(T_{i}(t) \rightarrow 0\) and \(V(t) \rightarrow 0\) as \(t \rightarrow +\infty \) when \(\rho < \frac{\omega _{v}}{\lambda _{v}}\).

Now, we show that \(T_{u}(t) \rightarrow 0\) as \(t \rightarrow +\infty \) too. From Eq. (B.2.1), we have

$$\begin{aligned} \frac{\mathrm{d}T_{u}}{\mathrm{d}t}&= -rT_{u} + rT_{i} + rT_{u}^2 + \lambda _{v}V - rT_{u}T_{i} - \lambda _{v}T_{u}V \\&= -rT_{u}(1-T_{u}) + rT_{i}(1-T_{u}) + \lambda _{v}V(1-T_{u}) \\&= (1-T_{u})\left[ rT_{i} + \lambda _{v}V - rT_{u}\right] \\&\le rT_{i} + \lambda _{v}V - rT_{u}. \end{aligned}$$

Solving for \(T_{u}\), we obtain

$$\begin{aligned} 0 \le T_{u}(t) \le T_{u0}e^{-rt} + e^{-rt} \int _0^t \left( rT_{i}(s) + \lambda _{v}V(s)\right) e^{rs} ds. \end{aligned}$$

Taking the limit on both sides, we have

$$\begin{aligned} \lim _{t\rightarrow \infty } T_{u}(t)&\le T_{u0} e^{-rt} + \lim _{t\rightarrow \infty } e^{-rt} \int _{0}^{t} \left( rT_{i}(s) + \lambda _{v}V(s)\right) e^{rs} ds \\&\le 0 + \lim _{t\rightarrow \infty } \frac{\int _{0}^{t} \left( rT_{i}(s) + \lambda _{v}V(s)\right) e^{rs} ds}{e^{rt}} \\&\le \lim _{t\rightarrow \infty } \frac{1}{r} \frac{\left( rT_{i}(t)+\lambda _{v}V(t)\right) e^{rt}}{e^{rt}} \\&\le \frac{1}{r}\left[ \lim _{t\rightarrow \infty } rT_{i} + \lim _{t\rightarrow \infty } \lambda _{v}V(t)\right] \\&\le \frac{1}{r}(0+0)\ \ \ (\text {since both } T_{u}(t) \rightarrow 0 \text { and } V(t) \rightarrow 0 \text { as } t \rightarrow +\infty .) \\&\le 0. \end{aligned}$$

Thus, we notice that \(T_{u}(t) \rightarrow 0\) as \(t \rightarrow +\infty \). Hence, given an initial condition in the domain \(\varvec{\Omega }_{\mathbf{V2}}\), then \(T_{u}(t),\ T_{i}(t)\) and V(t) all approach the origin as \(t \rightarrow +\infty \). Therefore, \(\mathbf {SS_{1}}\) is a global attractor for the system (3.2.6-3.2.8).

1.3 Proof of Theorem 4 (Threshold Local Stability)

Proof

We use a center manifold theorem to reduce the system (B.2.1B.2.3) to its local center manifold. First, we segregate the system into two parts, the part with zero eigenvalue and the one with negative eigenvalues. Considering the linear part of system (B.2.1B.2.3), then the corresponding matrix is

$$\begin{aligned} L = \left( \begin{array}{rrr} -r &{} r &{} \lambda _{v} \\ 0 &{} -1 &{} \lambda _{v} \\ 0 &{} \rho &{} -\rho \lambda _{v} \end{array}\right) \end{aligned}$$

The eigenvalues and corresponding eigenvectors of L are

$$\begin{aligned} \lambda _{1}&= -r, \ \ \ \text {with} \ \ \ V_{1} = \left( 1,0,0\right) ^{\text {T}} \\ \lambda _{2}&= -\left( 1+\rho \lambda _{v}\right) , \ \ \ \text {with} \ \ \ V_{2} = \left( \rho \lambda _{v}-r,1+\rho \lambda _{v}-r,\rho (1+\rho \lambda _{v}-r)\right) ^{\text {T}} \\ \lambda _{3}&= 0, \ \ \ \text {with} \ \ \ V_{3} = \left( \lambda _{v}(r+1),r\lambda _{v},r\right) ^{\text {T}}. \end{aligned}$$

Let \(T = \left( V_{1},V_{2},V_{3}\right) \) be the transformation matrix and let \(Y = \left( T_{u},T_{i},V\right) ^{\text {T}}\), then we can write the system (B.2.1B.2.3) into a reduced system

$$\begin{aligned} \frac{\mathrm{d}Y}{\mathrm{d}t} = LY + N, \end{aligned}$$
(B.3.1)

where \(N = \left( rT_{u}^2-rT_{u}T_{i}-\lambda _{v}T_{u}V,- \lambda _{v}T_{u}V,0\right) ^{\text {T}}\). Now let \(Y = TX\), then we have

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t} = T^{-1}LTX + T^{-1}N, \end{aligned}$$
(B.3.2)

where the diagonal matrix \(T^{-1}LT\) is define as

$$\begin{aligned} T^{-1}LT = \left( \begin{array}{rrr} -r &{} 0 &{} 0 \\ 0 &{} -(1+r\lambda _{v}) &{} 0 \\ 0 &{} 0 &{} 0 \end{array}\right) , \end{aligned}$$

and \(T_{u} = x_{1} + (\rho \lambda _{v}-r)x_{2} + \lambda _{v}(r+1)x_{3}\), \(T_{i} = (1+\rho \lambda _{v}-r)x_{2} + r\lambda _{v}x_{3}\), and

\(V = -\rho (1+\rho \lambda _{v}-r)x_{2} + rx_{3}\). Now considering the last term, \(T^{-1}N\), in Eq. (B.3.2), and let \(T^{-1}N = \left( n_{1},n_{2},n_{3}\right) ^{\text {T}}\), then expressing \(n_{i},\ i=1,2,3\) in terms of \(x_{i}\), we have

$$\begin{aligned} n_{1}&= rT_{u}^{2} - rT_{i} T_{u} - \lambda _{v}T_{u} V \\&= A_{11}x_{1}^{2} + A_{12}x_{1}x_{2} + A_{13}x_{1}x_{3} + A_{22}x_{2}^{2} + A_{23}x_{2}x_{3} + A_{33}x_{3}^{2}. \\ n_{2}&= \frac{1}{\lambda _{v}^{2} \rho ^{2} - \lambda _{v} r \rho + r - 1}\left( \left( \lambda _{v}T_{u} V + r T_{i} T_{u} - rT_{u}^{2} \right) \left( \left( \lambda _{v}^{2} r + \lambda _{v}^{2}\right) \rho ^{2} + r^{2}\right. \right. \\&\ \ \ \ \ - \left. \left. \left( \lambda _{v} r^{2} + \lambda _{v} r - \lambda _{v}\right) \rho \right) + r\lambda _{v} T_{u} V \right) \\&= B_{11}x_{1}^{2} + B_{12}x_{1}x_{2} + B_{13}x_{1}x_{3} + B_{22}x_{2}^{2} + B_{23}x_{2}x_{3} + B_{33}x_{3}^{2}. \\ n_{3}&= \frac{1}{\lambda _{v}^{2} \rho ^{2} - \lambda _{v} r \rho + r - 1}\left( {\left( \lambda _{v} T_{u} V + r T_{i} T_{u} - r T_{u}^{2}\right) } {\left( \lambda _{v}^{2} \rho + \lambda _{v}\right) } - r \lambda _{v}^{2} T_{u} V \right) \\&= C_{11}x_{1}^{2} + C_{12}x_{1}x_{2} + C_{13}x_{1}x_{3} + C_{22}x_{2}^{2} + C_{23}x_{2}x_{3} + C_{33}x_{3}^{2}. \end{aligned}$$

where the coefficients \(A_{ij}, B_{ij}\) and \(C_{ij},\ i,j = 1,2,3\) can be easily determined. Then, the transformed system can now be written as

$$\begin{aligned} \frac{\mathrm{d}Z}{\mathrm{d}t}&= BZ + \left( \begin{array}{r} n_{1} \\ n_{2} \end{array}\right) \end{aligned}$$
(B.3.3)
$$\begin{aligned} \frac{\mathrm{d}x_{3}}{\mathrm{d}t}&= Ax_{3} + n_{3}. \end{aligned}$$
(B.3.4)

where

$$\begin{aligned} B = \left( \begin{array}{rr} -r &{} 0 \\ 0 &{} -(1+r\lambda _{v}) \end{array}\right) ,\ \ \ \ \ \ \text {and} \ \ \ \ \ A = \left( 0\right) . \end{aligned}$$

It is easy to verify that the matrix B has negative eigenvalues and A has zero eigenvalue. It can also be easy checked that each \(n_{i},\ i = 1, 2, 3\), is a \(C^{2}\) differentiable function, \(n_{i}(0,0,0) = 0\) and \(Dn_{i}(0,0,0) = 0\), where \(Dn_{i}\) is the variational matrix of the function \(n_{i}\). Then, by the Center Manifold Theorem (Carr 1981), there exists a center manifold given by

$$\begin{aligned} Z = h(x_{3}) = \left( \begin{array}{r} h_{1}(x_{3}) \\ h_{2}(x_{3}) \end{array}\right) \end{aligned}$$
(B.3.5)

with \(h(0) = 0\) and \(Dh(0) = 0\), and it satisfies the equation

$$\begin{aligned} Bh(x_{3}) + \left( \begin{array}{r} n_{1}\left( h(x_{3}),x_{3}\right) \\ n_{2}\left( h(x_{3}),x_{3}\right) \end{array}\right)&= Dh(x_{3}) \cdot \left( Ax_{3} + n_{3}\left( h(x_{3}),x_{3}\right) \right) \end{aligned}$$
(B.3.6)
$$\begin{aligned}&= Dh(x_{3}) \cdot n_{3}\left( h(x_{3}),x_{3}\right) . \end{aligned}$$
(B.3.7)

Let \(u = x_{3}\), then we can approximate h(u) as follows:

$$\begin{aligned} h(u)&= \left( \begin{array}{r} h_{1}(u) \\ h_{2}(u) \end{array}\right) \end{aligned}$$
(B.3.8)
$$\begin{aligned}&= \left( \begin{array}{r} c_{2}u^{2} + c_{3}u^{3} + c_{4}u^{4} + O\left( u^{5}\right) \\ d_{2}u^{2} + d_{3}u^{3} + d_{4}u^{4} + O\left( u^{5}\right) \end{array}\right) . \end{aligned}$$
(B.3.9)

For simplicity, we consider the order up to 5, and we will know later if it is enough. Then, we calculate the \(n_{i},\ i = 1, 2, 3\), as follows:

$$\begin{aligned} n_{1}(h(u),u)&= n_{1}\left( h_{1}(u),h_{2}(u),u\right) \\&= A_{33}u^{2} + O\left( u^{4}\right) \\ n_{2}(h(u),u)&= n_{2}\left( h_{1}(u),h_{2}(u),u\right) \\&= B_{33}u^{2} + O\left( u^{4}\right) \\ n_{3}(h(u),u)&= n_{3}\left( h_{1}(u),h_{2}(u),u\right) \\&= C_{33}u^{2} + O\left( u^{4}\right) . \end{aligned}$$

We substituting \(n_{i},\ i = 1, 2, 3\), into Eq. (B.3.7), and comparing the coefficients on both sides of the equation, we obtain \(C_{33} = \frac{-r\lambda _{v}^2(r+1)^2(\lambda _{v}\rho + 1)}{\lambda _{v}^{2} \rho ^{2} - \lambda _{v} r \rho + r - 1} < 0\). Now reducing the system (B.2.1B.2.3) to its local center manifold, which is a single equation, we have

$$\begin{aligned} \frac{\mathrm{d}x_{3}}{\mathrm{d}t}&= n_{3}(h(x_{3}),x_{3}) = C_{33}x_{3}^{2} + O\left( x_{3}^{4}\right) . \end{aligned}$$
(B.3.10)

Eq. (B.3.10) governs the stability of the zero solution of the system (B.3.3B.3.4). Since \(C_{33} < 0\), then the zero solution, \(x_{3} = 0\), is locally asymptotically stable. Therefore, we conclude that the trivial solution of the system (B.2.1B.2.3) is locally asymptotically stable when \(\rho = \rho _{c} = \frac{\omega _{v}}{\lambda _{v}}\).

1.4 Proof of the Coexistence Steady State (\(\mathbf {SS_{2}}\)) Stability

Proof

If \(\mathcal {R}_{0}>1\), then we know that there is an additional steady state (Coexistence Steady State (\(\mathbf {SS_{2}}\))) given by

$$\begin{aligned} \mathbf {SS_{2}}=\left( {\frac{\omega _{v}}{\rho \lambda _{v}},}{\frac{\omega _{v}r\left( \lambda _{v}\rho -{\omega _{v}}\right) }{\lambda _{v}\rho \left( \omega _{v}r+{\lambda _{v}\rho }\right) },}{\frac{r\left( \lambda _{v}\rho -\omega _{v}\right) }{\lambda _{v}\left( \omega _{v}r+{\lambda _{v}}\rho \right) }}\right) . \end{aligned}$$

Furthermore, the characteristic equation at \(\mathbf {SS_{2}}\) is

$$\begin{aligned} {z}^{3}+b_{2}{z}^{2}+b_{1}z+b_{0}=0 \end{aligned}$$

with

$$\begin{aligned} \begin{array}{l} b_{2}={\frac{\lambda _{v}\rho \omega _{v}+\omega _{v}r+\rho \lambda _{v}}{ \rho \lambda _{v}}} \\ b_{1}={\frac{\omega _{v}r\left( \lambda _{v}\rho r+{\omega _{v}} ^{2}r+\lambda _{v}\rho \omega _{v}+\rho \lambda _{v}\right) }{\rho \lambda _{v}\left( \omega _{v}r+\rho \lambda _{v}\right) }}{\frac{\omega _{v}r\left( \rho \lambda _{v}-\omega _{v}\right) }{\rho \lambda _{v}}} \\ b_{0}={\frac{\omega _{v}r\left( r\rho \lambda _{v}{\omega _{v}}^{3}-{\ \rho } ^{3}{\lambda _{v}}^{3}+{\rho }^{2}{\lambda _{v}}^{2}{\omega _{v}} ^{2}+\lambda _{v}\omega _{v}{r}^{2}\rho +{r}^{2}{\omega _{v}}^{3}+{\lambda _{v}}^{2}{\rho }^{2}r+3r\rho \lambda _{v}{\omega _{v}}^{2}+3{\rho }^{2}{ \lambda _{v}}^{2}\omega _{v}+\lambda _{v}\omega _{v}r\rho +{\ \lambda _{v}} ^{2}{\rho }^{2}\right) }{{\rho }^{2}{\lambda _{v}}^{2}\left( \omega _{v}r+\rho \lambda _{v}\right) }}. \end{array} \end{aligned}$$

Moreover, we have \(b_{2}>0\) and if \(\mathcal {R}_{0}>1\), then \(b_{1}>0,b_{0}>0\) and

$$\begin{aligned} b_{1}b_{2}-b_{0}=&\Bigg (\frac{\omega _{v}r\left( r\rho \lambda _{v}{\omega _{v}} ^{3}-{\rho }^{3}{\lambda _{v}}^{3}+{\rho }^{2}{\lambda _{v}}^{2}{\omega _{v}} ^{2}+\lambda _{v}\omega _{v}{r}^{2}\rho +{r}^{2}{\omega _{v}}^{3}\right. }{{\rho }^{2}{\lambda _{v}}^{2}\left( \omega _{v}r+\rho \lambda _{v}\right) } \\&+ \frac{\left. {\lambda _{v}}^{2}{\rho }^{2}r+3r\rho \lambda _{v}{\omega _{v}}^{2}+3{\rho }^{2}{ \lambda _{v}}^{2}\omega _{v}+\lambda _{v}\omega _{v}r\rho +{\ \lambda _{v}} ^{2}{\rho }^{2}\right) }{{\rho }^{2}{\lambda _{v}}^{2}\left( \omega _{v}r+\rho \lambda _{v}\right) }\Bigg ) >0 \end{aligned}$$

Hence, by Routh–Hurwitz criterion (Zi 2011; Harris 2002), we deduce that \(\mathbf {SS_{2}}\) is locally asymptotically stable.

1.5 Proof of Theorem 5

Proof

The equilibrium points of (3.5.5) are given by the solutions of

$$\begin{aligned} \left\{ \begin{array}{l} \left( r\left( 1-T_{u}\right) -c_{T}N\right) T_{u}=0 \\ f_{N}-\eta T_{u}N-\kappa _{N}N=0. \end{array} \right. \end{aligned}$$
(B.5.1)

From (B.5.1)\(_{1}\) we obtain \(T_{u}=0\) or \(T_{u}={\frac{r-c_{T}N}{r}.}\)

  1. 1.

    If \(T_{u}=0\), then we obtain the equilibrium point, \(E_{00}=\left( 0, \frac{f_{N}}{\kappa _{N}}\right) .\) The eigenvalues of the variational matrix at \(E_{00}\) are \(-\kappa _{N}\) and \(r-\frac{f_{N}}{\kappa _{N}}c_{T}.\) Hence, \(E_{00}\) is locally asymptotically stable if \(r<{\dfrac{c_{T}f_{N}}{\kappa _{N}}}\).

  2. 2.

    If \(T_{u}={\dfrac{r-c_{T}N}{r},}\) then \(r>{\dfrac{c_{T}f_{N}}{\kappa _{N}}}\), then from (B.5.1)\(_{2}\) we obtain

    $$\begin{aligned} \frac{\eta c_{T}}{r}N^{2}-\left( \eta +\kappa _{N}\right) N+f_{N}=0. \end{aligned}$$
    (B.5.2)

    The discriminant of (B.5.2) is \(\Delta =\left( \eta +\kappa _{N}\right) ^{2}-4\dfrac{\eta c_{T}f_{N}}{r}>(\eta -\kappa _{N})^{2}\) (since \(r>{\frac{ c_{T}f_{N}}{\kappa _{N}}}\)). Hence, (B.5.2) has two real roots \(N_{\pm }={\dfrac{r\left( \eta +\kappa _{N}\pm \sqrt{\Delta }\right) }{2\eta c_{T}}}\) which are positive (since their product and sum positive). Moreover, we have \(T_{u_{\pm }}={\frac{r-c_{T}N_{\pm }}{r}=\frac{\eta -\kappa _{N}\mp \sqrt{ \Delta }}{2\eta }}\) which, by \(\Delta >(\eta -\kappa _{N})^{2},\) implies that \(T_{u_{+}}<0\) and \(T_{u_{-}}>0.\) This leads to the following virus-free equilibrium point

    $$\begin{aligned} E_{0}=\left( T_{u_{-}},N_{_{-}}\right) . \end{aligned}$$

    The eigenvalues of the variational matrix at \(E_{0}\) are given by the roots of the following characteristic equation

    $$\begin{aligned} z^{2}+\left( \left( r+\eta \right) T_{u_{-}}+\kappa _{N}\right) z+r\sqrt{ \Delta }T_{u_{-}}=0. \end{aligned}$$
    (B.5.3)

    Hence, \(r>{\dfrac{c_{T}f_{N}}{\kappa _{N}}}\), then \(T_{u_{-}}>0\) implying that (B.5.3) does not have roots with negative real parts.

1.6 The Basic Reproductive Number of the Virus-Free Sub-model

We use the next-generation method described in den Driessche and Watmough (2002) to calculate the basic reproductive number at \(E_{0}\). The vector formed by the rates of new infections is given by

$$\begin{aligned} \mathcal {F}=\left[ \begin{array}{c} \lambda _{v}T_{u}V \\ 0 \end{array} \right] \end{aligned}$$

The vector formed by the other transfer rates is

$$\begin{aligned} \mathcal {W}=\left[ \begin{array}{c} T_{i}+c_{TV}T_{i}N \\ -\rho T_{i}+\omega _{v}V+c_{V}VN \end{array} \right] \end{aligned}$$

The next-generation matrix is given by \(M=FV^{-1},\) where \(F=D\mathcal {F}_{ E_{0}}=\left[ \begin{array}{cc} 0 &{} \lambda _{v}T_{u0} \\ 0 &{} 0 \end{array} \right] \) and

\(W=D\mathcal {W}_{E_{0}}=\left[ \begin{array}{cc} 1+c_{TV}N_{0} &{} 0 \\ -\rho &{} \omega _{v}+c_{V}N_{0} \end{array} \right] .\) We obtain

$$\begin{aligned} M=\left[ \begin{array}{cc} \frac{\rho \lambda _{v}\left( r-c_{T}N_{0}\right) }{r\left( c_{TV}N_{0}+1\right) \left( \omega _{v}+c_{V}N_{0}\right) } &{} \frac{\lambda _{v}\left( r-c_{T}N_{0}\right) }{r\left( \omega _{v}+c_{V}N_{0}\right) } \\ 0 &{} 0 \end{array} \right] . \end{aligned}$$

Thus,

$$\begin{aligned} \mathcal {R}_{0}=\frac{\rho \lambda _{v}\left( r-c_{T}N_{0}\right) }{r\left( c_{TV}N_{0}+1\right) \left( \omega _{v}+c_{V}N_{0}\right) }. \end{aligned}$$

Model Parameters and Initial Conditions

Known model parameter values and their ranges were taken from available literature, while unknown parameter ranges were estimated using values that seemed biologically reasonable. The baseline parameters used in the model simulations are given in Table 1. Since various mechanisms might lead to NK cell activation and recruitment, we parametrize our model based on the fact that NK cell activation/recruitment is dependent on interactions between the NK cells and infected tumor cells (Leung et al. 2020) or an ICD of infected cells (Bommareddy et al. 2019; Somma et al. 2019). Thus, we adopt the activation/recruitment rate for NK cells as \(\xi _{N} = 1\times 10^{-5}\) day\(^{-1}\) (Guo et al. 2019) as our baseline value, but we shall vary this parameter in the numerical analysis to explore the potential effects of induced NK cell-mediated responses in oncolytic virotherapy. For the other parameters which govern the cytopathicity of OV, we also sweep parameters within their realistic biological ranges. Note that while we fix the values of most of the parameters used in our simulations, small variations in the values of OV or NK cell related parameters allow our model to capture different dynamics of the OV–tumor–NK cell interactions. Furthermore, in this study we do not consider a specific virus as our baseline state variable because we are interested in the OV-induced NK cell-mediated responses in general. We explore a plausible range of recruitment rates to capture the range of likely behavior of slow and fast replicating viruses. Notably, our model captures different aspects of slow replicating viruses, such the recombinant measles virus (MV-I98A-NIS) (Kemler et al. 2019; Ennis et al. 2010), which may lead to slow recruitment of activated NK cell, and the fast replicating viruses, such as the oncolytic herpes simplex virus (HSV) (Alvarez-Breckenridge et al. 2012b), which may lead to rapid recruitment of activated NK cells (Alvarez-Breckenridge et al. 2012b). It is also known, however, that the same oncolytic virus might replicate differently in different regions (Kemler et al. 2019). Hence, we do not consider specific virus kinetics in this study, but rather focus on the ability of OV infection in recruiting activated NK cells. For the sake of parameter estimation, we consider the virus kinetics of oncolytic vesicular stomatitis virus (VSV), which is also a fast replicating virus (Mahasa et al. 2017; Eftimie and Eftimie 2019), to estimate the virus lysis rate, \(\delta \), and the viral clearance rate, \(\gamma \). Tumor- and NK cell-related kinetic parameters are taken from the experimental–mathematical models available in the literature and their sources are provided in Table 1. Unless otherwise stated, we assume the following initial conditions: \(T_{u} = 1\times 10^{6}\) cells, \(T_{i} = 0\) cells and \(V = 1\times 10^{6}\) PFU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senekal, N.S., Mahasa, K.J., Eladdadi, A. et al. Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bull Math Biol 83, 75 (2021). https://doi.org/10.1007/s11538-021-00903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00903-6

Keywords

Navigation