Skip to main content
Log in

Source of inoculum of pathogens, the origin of disorders and diseases management in avocado nurseries

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The fundamental basis for the adequate development of avocado crops is the quality of the planting material, which must have genetic identity and high phytosanitary standards. It is considered that many of the pathologies present in the fields are introduced from the nursery stage, as asymptomatic infections. The objectives of this study were to identify the inoculum sources of different diseases and origin of disorders and to design management strategies to reduce pathogen inoculum and the occurrence of abiotic disorders in avocado at nursery stage. This experiment and survey involved the monitoring of six commercial avocado nurseries for a period of eight years. We evaluated seed, water, soils and substrate, size bags and soil moisture to determine the source of biotic and abiotic causal agents of the different diseases and disorders. In the second part, we evaluated the incidence and mortality of diseases and disorders under management practices associated with sanitation of all processes in nurseries to produce seedlings. It was found that seeds, irrigation and drainage water, and especially the substrate for germination and growth are the principal sources of inoculum of pathologies of biotic origin as Phytophthora cinnamomi, P. palmivora, Verticillium spp., Lasiodiplodia theobromae, Pythium spp., Fusarium oxysporum, Cylindrocarpon spp., Colletotrichum gloeosporioides, Penicillium sp., and Rosellinia sp. On the other hand, bag size and moisture regimes are involved in root atrophy and hypoxia-anoxia disorders. In addition, we suggest basic procedures based on seed quality and hygiene processes to improve disease prevention and pathologies reduction in avocado nurseries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrios G (2005) Plant pathology. Elvesier Academic Press, Dana Dreibelbis, London UK

    Google Scholar 

  • Aleandri MP, Chilosi G, Bruni N et al (2015) Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Prot 67:269–278. https://doi.org/10.1016/j.cropro.2014.10.023

    Article  Google Scholar 

  • APS (2017) Diseases of avocado (Persea americana Miller). In: Dis. Avocado - Am. Phytopathol. Soc. https://www.apsnet.org/publications/commonnames/Pages/Avocado.aspx. Accessed 9 Aug 2017

  • Barbercheck ME, Von Broembsen SL (1986) Effects of soil solarization on plant-parasitic nematodes and Phytophthora cinnamomi in South Africa. Plant Dis 70:945–950

    Article  Google Scholar 

  • Barnett HL, Hunter BB (1972) Illustrated genera of imperfect fungi. Burgess Publishing Company, Minnesota E.U

  • Bate AM, Jones G, Kleczkowski A et al (2016) Modelling the impact and control of an infectious disease in a plant nursery with infected plant material inputs. Ecol Model 334:27–43. https://doi.org/10.1016/j.ecolmodel.2016.04.013

    Article  Google Scholar 

  • Belisle RJ, Hao W, McKee B et al (2019) New Oomycota Fungicides With Activity Against Phytophthora cinnamomi and Their Potential Use for Managing Avocado Root Rot in California. Plant Dis 103:2024–2032. https://doi.org/10.1094/PDIS-09-18-1698-RE

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ya’acov A (1987) Avocado rootstock-scion relationships South African Avocado Growers’ Association Yearbook 10:30-32

  • Coffey MD (1987) Phytophthora root rot of avocado: an integrated approach to control in California. Calif Avocado Soc Yearb USA 121–137

  • Danielson RE, Sutherland PL (1987) Porosity. Methods of soil analysis, part 1, physical and mineralogical methods, 2nd edn. Amer. Soc. of Agronomy, Madison, Wisconsin, USA, pp 443–460

    Google Scholar 

  • De Cal A, Martinez-Treceño A, Salto T et al (2005) Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries. Appl Soil Ecol 28:47–56. https://doi.org/10.1016/j.apsoil.2004.06.005

    Article  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide, Edición: illustrated edition. American Phytopathological Society, St. Paul, Minnesota

  • FAO (2020) FAOSTAT. http://www.fao.org/faostat/es/#home. Accessed 9 Jan 2020

  • Gallo L, Siverio F, Rodríguez-Pérez A-M (2007) Thermal sensitivity of Phytophthora cinnamomi and long-term effectiveness of soil solarisation to control avocado root rot. Ann Appl Biol 150:65–73. https://doi.org/10.1111/j.1744-7348.2007.00108.x

    Article  Google Scholar 

  • Ghimire SR, Richardson PA, Kong P et al (2011) Distribution and diversity of Phytophthora species in nursery irrigation reservoir adopting water recycling system during winter months. J Phytopathol 159:713–719. https://doi.org/10.1111/j.1439-0434.2011.01831.x

    Article  Google Scholar 

  • Gutiérrez P, Salazar Yepes M, Restrepo A et al (2014) The CD1/CD2 marker for specific detection of Colletotrichum lindemuthianum is an iron transporter pseudogene. Trop Plant Pathol 39:275–283. https://doi.org/10.1590/S1982-56762014000400002

    Article  Google Scholar 

  • Hardham AR, Blackman LM (2018) Phytophthora cinnamomi. Mol. Plant Pathol 19:260–285. https://doi.org/10.1111/mpp.12568

    Article  Google Scholar 

  • Ica, Instituto Colombiano Agropecuario (2010) Manual técnico de manejo de los viveros para la producción y distribución de aguacate (Persea americana Miller) en colombia. Subgerencia de protección vegetal dirección técnica de epidemiología y vigilancia fitosanitaria. Resolución del Ica número 003180 del 26 de agosto del año 2009.

  • Jaramillo DF (2002) Introducción a la ciencia del suelo. Universidad Nacional de Colombia facultad de Ciencias, Medellín Colombia

    Google Scholar 

  • Juarez-Palacios C, Felix-Gastelum R, Wakeman RJ et al (1991) Thermal sensitivity of three species of Phytophthora and the effect of soil solarization on their survival. Plant Dis USA 75:1160–1164

    Article  Google Scholar 

  • Kinal J, Shearer BL, Fairman RG (1993) Dispersal of Phytophthora cinnamomi through lateritic soil by laterally flowing subsurface water. Plant Dis 77:1085–1090

    Article  Google Scholar 

  • Kuhn DN, Livingstone DS, Richards JH et al (2019) Application of genomic tools to avocado (Persea americana) breeding: SNP discovery for genotyping and germplasm characterization. Sci Hortic 246:1–11. https://doi.org/10.1016/j.scienta.2018.10.011

    Article  CAS  Google Scholar 

  • Lamichhane JR, Dürr C, Schwanck AA et al (2017) Integrated management of damping-off diseases. A review Agron Sustain Dev 37:10. https://doi.org/10.1007/s13593-017-0417-y

    Article  Google Scholar 

  • Lau MK (2015) Dunnett-Tukey-Kramer pairwise multiple comparison test adjusted for unequal variances and unequal sample sizes.

  • Lazare S, Haberman A, Yermiyahu U, Erel R, Simnski E, Dag A (2020) Avocado rootstock influences scion leaf mineral content. Archives of Agronomy and Soil Science 66:1399–1409

    Article  CAS  Google Scholar 

  • Lopez-Herrera CJ, Pérez-Jimenez RM, Basallote-Ureba MJ et al (1997) Effect of soil solarization on the control of Phytophthora root rot in avocado. Plant Pathol 46:329–340. https://doi.org/10.1046/j.1365-3059.1997.d01-18.x

    Article  Google Scholar 

  • MacDonald JD, Ali-Shtayeh MS, Stites J, Kabashima J (1994) Occurrence of Phytophthora species in recirculated nursery irrigation effluents. Plant Dis 78:607–611. https://doi.org/10.1094/PD-78-0607

    Article  Google Scholar 

  • McCluskey A, Lalkhen AG (2007) Statistics II: Central tendency and spread of data. Contin Educ Anaesth Crit Care Pain 7:127–130

    Article  Google Scholar 

  • Menge JA, Ploetz RC (2003) Diseases of avocado. In: Ploetz RC (ed) Diseases of tropical fruit crops. CABI, Wallingford, pp 35–71

    Chapter  Google Scholar 

  • Parkinson LE, Shivas RG, Dann EK (2017) Pathogenicity of Nectriaceous Fungi on Avocado in Australia. Phytopathology 107:1479–1485. https://doi.org/10.1094/PHYTO-03-17-0084-R

    Article  PubMed  Google Scholar 

  • Ploetz RC (2007) Diseases of tropical perennial crops: Challenging problems in diverse environments. Plant Dis 91:644–663. https://doi.org/10.1094/PDIS-91-6-0644

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, DeVay JE, Garber R (1981) Soil solarisation and thermal death: a logarithmic relationship between time and temperature for four soilborne plant pathogens. Phytopathology 71:959–964

    Article  Google Scholar 

  • R Development Core Team (2020) R: The R Project for Statistical Computing. In: R Found. Stat. Comput. Vienna Austria. https://www.r-project.org/. Accessed 1 Jun 2020

  • Ramírez-Gil J, Morales-Osorio JG (2019) Polyphasic identification of preharvest pathologies and disorders in avocado cv. Hass. Agron Colomb 37:213–227. https://doi.org/10.15446/agron.colomb.v37n3.78528

  • Ramírez-Gil JG, Cobos ME, Jiménez-García D et al (2019) Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop Pasture Sci 70:694–708. https://doi.org/10.1071/CP19094

    Article  Google Scholar 

  • Ramírez-Gil JG, Gilchrist Ramelli E, Morales Osorio JG (2017) Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Prot 101:103–115. https://doi.org/10.1016/j.cropro.2017.07.023

    Article  Google Scholar 

  • Ramírez-Gil JG, Henao-Rojas JC, Morales Osorio JG (2020) Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in avocado cv. hass crops. Plants 9(6):790. https://doi.org/10.3390/plants9060790

  • Ramírez-Gil JG, Martínez GOG, Morales Osorio JG (2018) Design of electronic devices for monitoring climatic variables and development of an early warning system for the avocado wilt complex disease. Comput Electron Agric 153:134–143. https://doi.org/10.1016/j.compag.2018.08.002

    Article  Google Scholar 

  • Rani A, Donovan N, Mantri N (2019) Review: The future of plant pathogen diagnostics in a nursery production system. Biosens Bioelectron 145:111631. https://doi.org/10.1016/j.bios.2019.111631

    Article  CAS  PubMed  Google Scholar 

  • Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The Genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands

  • Shaad N, Jones J, Chun W (2001) Laboratory guide for identification of plant pathogenic bacteria., Schaad, N. W.; Jones, J. B.; Chun, W. American Phytopathological Society, St. Paul USA

  • Stolzy L, Zentmyer G, Klotz L, Labanauskas C (1967) Oxygen diffusion, water, and Phytophthora cinnamomi in root decay and nutrition of avocados. Am Soc Hortic Sci 90:67–76

    Google Scholar 

  • Themann K, Werres S, Lüttmann R, Diener H-A (2002) Observations of Phytophthora spp. in water recirculation systems in commercial hardy ornamental nursery stock. Eur J Plant Pathol 108:337–343. https://doi.org/10.1023/A:1015614625414

    Article  Google Scholar 

  • Villarino M, Larena I, Melgarejo P, Cal AD (2020) Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study. Pest Manag Sci n/a:1–9. https://doi.org/10.1002/ps.6077

  • Weiland JE, Beck BR, Davis A (2013) Pathogenicity and Virulence of Pythium species obtained from forest nursery soils on Douglas-Fir seedlings. Plant Dis 97:744–748. https://doi.org/10.1094/PDIS-09-12-0895-RE

    Article  CAS  PubMed  Google Scholar 

  • White T, Bruns T, Lee S, Taylor L (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A guide to methods and applications, MA Innis, DH Gelfand, JJ Sninsky and TJ White. Academic Press, San Diego Usa, pp 315–322

  • Zentmyer G (1984) Avocado diseases Trop Pest Manag 30:677–682

    Google Scholar 

  • Zumaquero A, Martínez-Ferri E, Matas AJ et al (2019) Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks. PLoS ONE 14:e0212359. https://doi.org/10.1371/journal.pone.0212359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universidad Nacional de Colombia Medellín campus for partially funding this work, and Colciencias for the Ph.D. scholarship of JGRG. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Guillermo Ramírez-Gil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A. Analytical results of physicochemical characteristics of the substrate used in the experiments

Real density

Bulk density

Porosity

Sand

Lime

Clay

pH OM

Al+3

Ca+2

Mg+1

K+1

P+5

NO3−1

NH4+1

  

%

 

%

   

cmolc kg-1

   

mg kg-1

 

2.42

0.8

70.9

160

19.5

20

5     12

1.1

1

0.6

0.3

3

2

1

  1. Texture (Bouyoucos); pH potentiometer soil–water ratio 1–2; OM organic matter (Walkley and Black), Al+3 (KCl 1 M); Ca+2, Mg+1, and K+1 (Ammonium acetate 1 M); NO3−1 (Aluminum sulfate 0.025 M); NH4+1(KCl 1 M); P+5 (Bray II). Analysis performed at “Laboratorio de Suelos de la Universidad Nacional de Colombia—Sede Medellín”

Appendix B. Relationship between moisture and air content in the growth substrate of nursery plants

Porositya

Volumetric moisture

Gas content

Total pore volume

Water saturation

70.9

10

60.9

80.9

12.4

70.9

15

55.9

85.9

17.5

70.9

20

50.9

90.9

22.0

70.9

25

45.9

95.9

26.1

70.9

30

40.9

100

30

70.9

35

35.9

100

35

70.9

40

30.9

100

40

70.9

45

25.9

100

45

70.9

50

20.9

100

50

70.9

55

15.9

100

55

70.9

60

10.9

100

60

70.9

65

5.9

100

65

70.9

70

0.9

100

70

70.9

75

0

100

75

70.9

80

0

100

80

70.9

85

0

100

85

70.9

90

0

100

90

70.9

95

0

100

95

70.9

100

0

100

100

  1. aCostant porosity of substrate. The values are the mean of each replicate in the different nurseries evaluated

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Gil, J.G., Osorio, J.G.M. Source of inoculum of pathogens, the origin of disorders and diseases management in avocado nurseries. Australasian Plant Pathol. 50, 457–468 (2021). https://doi.org/10.1007/s13313-021-00796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-021-00796-y

Keywords

Navigation