Skip to main content
Log in

Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work a novel integral higher shear deformation theory (HSDT) which introducing the transverse shear effect is developed for thermoelastic bending analysis of Titanium/Zirconia power-law functionally graded (P-FG) sandwich plates. This integral theory contains only four variable functions as against five in the case of other HSDTs. The proposed model has a reduced number of equations and satisfies automatically the free surface conditions (zero shear stresses) without using the shear correction factor. The P-FG sandwich plate is assumed composed of the isotropic core and FG skins. The governing equations of are derived and resolved via virtual work principle and Navier’s model. The accuracy of the proposed analytical model is confirmed by comparing the results with those given by others model existing in the literature. Also, several parametric examples are presented to show the thermoelastic bending response of the various symmetric P-FG sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sayyad, A.S., Ghugal, Y.M.: Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature. Compos. Struct. 171, 486–504 (2017). https://doi.org/10.1016/j.compstruct.2017.03.053

    Article  Google Scholar 

  2. Kar, V.R., Mahapatra, T.R., Panda, S.K.: Effect of different temperature load on thermal post buckling behaviour of functionally graded shallow curved shell panels. Compos. Struct. 160, 1236–1247 (2017). https://doi.org/10.1016/j.compstruct.2016.10.125

    Article  Google Scholar 

  3. Avcar, M.: Free vibration of imperfect sigmoid and power law functionally graded beams. Steel Compos. Struct. 30(6), 603–615 (2019). https://doi.org/10.12989/scs.2019.30.6.603

    Article  Google Scholar 

  4. Madenci, E.: A refined functional and mixed formulation to static analyses of FGM beams. Struct. Eng. Mech. 69(4), 427–437 (2019). https://doi.org/10.12989/sem.2019.69.4.427

    Article  Google Scholar 

  5. Woodward, B., Kashtalyan, M.: Three-dimensional elasticity analysis of sandwich panels with functionally graded transversely isotropic core. Arch. Appl. Mech. 89, 2463–2484 (2019). https://doi.org/10.1007/s00419-019-01589-y

    Article  Google Scholar 

  6. Lyashenko, I., Borysiuk, V., Popov, V.: Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials. Fact. Univ. Ser.: Mech. Eng. 18(2), 245–254 (2020). https://doi.org/10.22190/FUME200129020L

    Article  Google Scholar 

  7. Shariati, A., Won, J.D., Sedighi, H.M., Żur, K.K., Habibi, M., Safa, M.: On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13(7), 1707 (2020). https://doi.org/10.3390/ma13071707

    Article  Google Scholar 

  8. Abouelregal, A.E., Mohammed, W.W., Sedighi, H.M.: Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags. Arch. Appl. Mech. (2021). https://doi.org/10.1007/s00419-020-01873-2

    Article  Google Scholar 

  9. Shen, M., Bever, M.B.: Gradients in polymeric materials. J. Mater. Sci. 7, 741–746 (1972). https://doi.org/10.1007/BF00549902

    Article  Google Scholar 

  10. Swaminathan, K., Sangeetha, D.M.: Thermal analysis of FGM plates—a critical review of various modeling techniques and solution methods. Compos. Struct. 160, 43–60 (2017). https://doi.org/10.1016/j.compstruct.2016.10.047

    Article  Google Scholar 

  11. Birman, V., Kardomateas, G.A.: Review of current trends in research and applications of sandwich structures. Compos. B Eng. 142, 221–240 (2018). https://doi.org/10.1016/j.compositesb.2018.01.027

    Article  Google Scholar 

  12. Sator, L., Sladek, V., Sladek, J.: Consistent 2D formulation of thermoelastic bending problems for FGM plates. Compos. Struct. 212, 412–422 (2019). https://doi.org/10.1016/j.compstruct.2019.01.048

    Article  MATH  Google Scholar 

  13. Reddy, J.N., Chin, C.D.: Thermo-mechanical analysis of functionally graded cylinders and plates. J. Therm. Stresses 21, 593–626 (1998). https://doi.org/10.1080/01495739808956165

    Article  Google Scholar 

  14. Bodaghi, M., Saidi, A.R.: Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch. App. Mech. 81(11), 1555–1572 (2011). https://doi.org/10.1007/s00419-010-0501-0

    Article  MATH  Google Scholar 

  15. Jena, S.K., Chakraverty, S., Malikan, M., Sedighi, H.: Implementation of Hermite-Ritz method and Navier’s technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity. J. Mech. Mater. Strut. 15(3), 405–434 (2020). https://doi.org/10.2140/jomms.2020.15.405

    Article  MathSciNet  Google Scholar 

  16. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Struct. 94(5), 1814–1825 (2012). https://doi.org/10.1016/j.compstruct.2011.12.005

    Article  Google Scholar 

  17. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. B Eng. 44(1), 657–674 (2013). https://doi.org/10.1016/j.compositesb.2012.01.089

    Article  Google Scholar 

  18. Van Do, V.N., Lee, C.H.: Free vibration and transient analysis of advanced composite plates using a new higher-order shear and normal deformation theory. Arch. Appl. Mech. 91, 1793–1818 (2021). https://doi.org/10.1007/s00419-020-01855-4

    Article  Google Scholar 

  19. Hosseini-Hashemi, S., Fadaee, M., Rokni Damavandi Taher, H.: Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory. Appl. Math. Model. 35(2), 708–727 (2011). https://doi.org/10.1016/j.apm.2010.07.028

    Article  MathSciNet  MATH  Google Scholar 

  20. Mantari, J.L., Oktem, A.S., Guedes Soares, C.: A new higher order shear deformation theory for sandwich and composite laminated plates. Compos. B Eng. 43(3), 1489–1499 (2012). https://doi.org/10.1016/j.compositesb.2011.07.017

    Article  MATH  Google Scholar 

  21. Nguyen, V.H., Nguyen, T.K., Thai, H.T., Vo, T.P.: A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Compos. B Eng. 66, 233–246 (2014). https://doi.org/10.1016/j.compositesb.2014.05.012

    Article  Google Scholar 

  22. Daouadji, T.H., Hadji, L.: Analytical solution of nonlinear cylindrical bending for functionally graded plates. Geomech. Eng. 9(5), 631–644 (2015). https://doi.org/10.12989/GAE.2015.9.5.631

    Article  Google Scholar 

  23. Zafarmand, H., Kadkhodayan, M.: Three dimensional elasticity solution for static and dynamic analysis of multi-directional functionally graded thick sector plates with general boundary conditions. Compos. B Eng. 69, 592–602 (2015). https://doi.org/10.1016/j.compositesb.2014.10.048

    Article  Google Scholar 

  24. Mantari, J.L., Ramos, I.A., Carrera, E., Petrolo, M.: Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation. Compos. B Eng. 89, 127–142 (2016). https://doi.org/10.1016/j.compositesb.2015.11.025

    Article  Google Scholar 

  25. Ebrahimi, F., Barati, M.R., Civalek, Ö.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2019). https://doi.org/10.1007/s00366-019-00742-z

    Article  Google Scholar 

  26. Akavci, S.S., Tanrikulu, A.H.: Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories. Compos. B Eng. 83, 203–215 (2015). https://doi.org/10.1016/j.compositesb.2015.08.043

    Article  Google Scholar 

  27. Tornabene, F., Fantuzzi, N., Bacciocchi, M.: Linear static behavior of damaged laminated composite plates and shells. Materials 10(7), 811 (2017). https://doi.org/10.3390/ma10070811

    Article  Google Scholar 

  28. Shariyat, M.: A generalized high-order global–local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads. Compos. Struct. 92(1), 130–143 (2010). https://doi.org/10.1016/j.compstruct.2009.07.007

    Article  Google Scholar 

  29. Xiang, S., Wang, K., Ai, Y., Sha, Y., Shi, H.: Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Compos. Struct. 91(1), 31–37 (2009). https://doi.org/10.1016/j.compstruct.2009.04.029

    Article  Google Scholar 

  30. Grover, N., Maiti, D.K., Singh, B.N.: A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates. Compos. Struct. 95, 667–675 (2013). https://doi.org/10.1016/j.compstruct.2012.08.012

    Article  Google Scholar 

  31. Matsunaga, H.: Stress analysis of functionally graded plates subjected to thermal and mechanical loadings. Compos. Struct. 87(4), 344–357 (2009). https://doi.org/10.1016/j.compstruct.2008.02.002

    Article  Google Scholar 

  32. Talha, M., Singh, B.N.: Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic-metal plates using the finite element method. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 225, 50–65 (2011). https://doi.org/10.1243/09544062JMES2115

    Article  Google Scholar 

  33. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A.: Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory. Steel Compos. Struct. Int. J. 18(6), 1493–1515 (2015). https://doi.org/10.12989/scs.2015.18.6.1493

    Article  Google Scholar 

  34. Mehar, K., Panda, S.K.: Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings. Int. J. Comput. Methods 14(2), 1750019 (2016). https://doi.org/10.1142/S0219876217500190

    Article  MathSciNet  MATH  Google Scholar 

  35. Praveen, G.N., Chin, C.D., Reddy, J.N.: Thermoelastic analysis of functionally graded ceramic-metal cylinder. J. Eng. Mech. 125(11), 1259–1267 (1999). https://doi.org/10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  36. Ying, J., Lü, C.F., Lim, C.W.: 3D thermoelasticity solutions for functionally graded thick plates. J. Zhejiang Univ. Sci. A 10(3), 327–336 (2009). https://doi.org/10.1631/jzus.A0820406

    Article  MATH  Google Scholar 

  37. Mantari, J.L., Granados, E.V.: Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns. Compos.: Part B 69, 317–334 (2015). https://doi.org/10.1016/j.compositesb.2014.10.009

    Article  Google Scholar 

  38. Zenkour, A.M., Alghamdi, N.A.: Thermoelastic bending analysis of functionally graded sandwich plates. J. Mater. Sci. 43(8), 2574–2589 (2008). https://doi.org/10.1007/s10853-008-2476-6

    Article  Google Scholar 

  39. Vinyas, M.: On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos. Struct. 240, 112044 (2020). https://doi.org/10.1016/j.compstruct.2020.112044

    Article  Google Scholar 

  40. Sahoo, B., Mehar, K., Sahoo, B., Sharma, N., Panda, S.K.: Thermal frequency analysis of FG sandwich structure under variable temperature loading. Struct. Eng. Mech. 77(1), 57–74 (2021). https://doi.org/10.12989/sem.2021.77.1.057

    Article  Google Scholar 

  41. Hadji, L., Avcar, M.: Free vibration analysis of FG porous sandwich plates under various boundary conditions. J. Appl. Comput. Mech. 7(2), 505–519 (2021). https://doi.org/10.22055/JACM.2020.35328.2628

    Article  Google Scholar 

  42. Attia, M.A.: On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int. J. Eng. Sci. 115, 73–101 (2017). https://doi.org/10.1016/j.ijengsci.2017.03.011

    Article  MathSciNet  MATH  Google Scholar 

  43. Civalek, Ö., Demir, C.: A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016). https://doi.org/10.1016/j.amc.2016.05.034

    Article  MathSciNet  MATH  Google Scholar 

  44. Ahmed, R.A., Fenjan, R.M., Faleh, N.M.: Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections. Geomech. Eng. 17(2), 175–180 (2019). https://doi.org/10.12989/gae.2019.17.2.175

    Article  Google Scholar 

  45. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S., Benachour, A.: 2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: effect of the micromechanical models. Geomech. Eng. 22(4), 361–374 (2020). https://doi.org/10.12989/gae.2020.22.4.361

    Article  Google Scholar 

  46. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Sekkal, M., Bachir Bouiadjra, R., Benachour, A.: Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation. Geomech. Eng. 22(1), 065–080 (2020). https://doi.org/10.12989/gae.2020.22.1.065

    Article  Google Scholar 

  47. Hadji, L.: Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model. Smart Struct. Syst. 26(2), 253–262 (2020). https://doi.org/10.12989/sss.2020.26.2.253

    Article  Google Scholar 

  48. Sayyad, A., Ghumare, S.: A new quasi-3D model for functionally graded plates. J. Appl. Comput. Mech. 5(2), 367–380 (2019). https://doi.org/10.22055/JACM.2018.26739.1353

    Article  Google Scholar 

  49. Nebab, M., Ait Atmane, H., Bennai, R., Tahar, B.: Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory. Earthq. Struct. 17(5), 447–462 (2019). https://doi.org/10.12989/eas.2019.17.5.447

    Article  Google Scholar 

  50. Nebab, M., Benguediab, S., Ait Atmane, H., Bernard, F.: A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations. Geomech. Eng. 22(5), 415–431 (2020). https://doi.org/10.12989/gae.2020.22.5.415

    Article  Google Scholar 

  51. Ramirez, D., Cuba, L., Mantari, J.L., Arciniega, R.A.: Bending and free vibration analysis of functionally graded plates via optimized non-polynomial higher order theories. J. Appl. Comput. Mech. 5(2), 281–298 (2019). https://doi.org/10.22055/JACM.2018.25177.1237

    Article  Google Scholar 

  52. Demir, Ç., Civalek, Ö.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37(22), 9355–9367 (2013). https://doi.org/10.1016/j.apm.2013.04.050

    Article  Google Scholar 

  53. Kolahchi, R., Safari, M., Esmailpour, M.: Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium. Compos. Struct 150, 255–265 (2016). https://doi.org/10.1016/j.compstruct.2016.05.023

    Article  Google Scholar 

  54. Daouadji, T.H.: Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate. Adv. Comput. Des. 2(1), 57–69 (2017). https://doi.org/10.12989/acd.2017.2.1.057

    Article  Google Scholar 

  55. Mehar, K., Panda, S.K., Mahapatra, T.R.: Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure. Eur. J. Mech. A. Solids 65, 384–396 (2017). https://doi.org/10.1016/j.euromechsol.2017.05.005

    Article  MathSciNet  MATH  Google Scholar 

  56. Akgöz, B., Civalek, Ö.: A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos. Struct. 176, 1028–1038 (2017). https://doi.org/10.1016/j.compstruct.2017.06.039

    Article  Google Scholar 

  57. Panjehpour, M., Eric, W., Kee, L., Deepak, T.J.: Structural insulated panels: state-of-the-art. Trends Civ. Eng. Archit. 3(1), 336–340 (2018). https://doi.org/10.32474/TCEIA.2018.03.000151

    Article  Google Scholar 

  58. Numanoğlu, H.M., Akgöz, B., Civalek, Ö.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018). https://doi.org/10.1016/j.ijengsci.2018.05.001

    Article  Google Scholar 

  59. Rajabi, J., Mohammadimehr, M.: Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby–Mori–Tanaka approach. Comput. Concrete 23(5), 361–376 (2019). https://doi.org/10.12989/cac.2019.23.5.361

    Article  Google Scholar 

  60. Selmi, A.: Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy. Adv. Nano Res. Int. J. 7(5), 365–377 (2019). https://doi.org/10.12989/anr.2019.7.5.365

    Article  Google Scholar 

  61. Selmi, A.: Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam. Smart Struct. Syst. 26(3), 361–371 (2020). https://doi.org/10.12989/SSS.2020.26.3.361

    Article  MathSciNet  Google Scholar 

  62. Fadoun, O.O.: Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation. Comput. Concrete 23(5), 303–309 (2019). https://doi.org/10.12989/cac.2019.23.5.303

    Article  Google Scholar 

  63. Kiani, Y.: NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. J. Therm. Stress. (2019). https://doi.org/10.1080/01495739.2019.1673687

    Article  Google Scholar 

  64. Mehar, K., Panda, S.K.: Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure. Adv. Nano Res. 7(3), 181–190 (2019). https://doi.org/10.12989/ANR.2019.7.3.181

    Article  Google Scholar 

  65. Civalek, Ö., Uzun, B., Yaylı, M.Ö., Akgöz, B.: Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135(4), 381 (2020). https://doi.org/10.1140/epjp/s13360-020-00385-w

    Article  Google Scholar 

  66. Yaylaci, M., Avcar, M.: Finite element modeling of contact between an elastic layer and two elastic quarter planes. Comput. Concr. 26(2), 107–114 (2020). https://doi.org/10.12989/CAC.2020.26.2.107

    Article  Google Scholar 

  67. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P., Doddamani, M.: Effect of axial compression on dynamic response of concurrently printed sandwich. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.113223

    Article  Google Scholar 

  68. Timesli, A.: Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation. Comput. Concrete 26(1), 53–62 (2020). https://doi.org/10.12989/CAC.2020.26.1.053

    Article  Google Scholar 

  69. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M., Algarni, A.: Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body. Geomech. Eng. 21(1), 1–9 (2020). https://doi.org/10.12989/GAE.2020.21.1.001

    Article  Google Scholar 

  70. Zhou, K., Su, J., Hua, H.: Free and forced vibration analysis of moderately thick orthotropic plates in thermal environment and resting on elastic supports. Arch. Appl. Mech. 88, 855–873 (2018). https://doi.org/10.1007/s00419-018-1346-1

    Article  Google Scholar 

  71. Zhang, J., Ullah, S., Gao, Y., Avcar, M., Civalek, O.: Analysis of orthotropic plates by the two-dimensional generalized FIT method. Comput. Concrete 26(5), 421–427 (2020). https://doi.org/10.12989/cac.2020.26.5.421

    Article  Google Scholar 

  72. Civalek, Ö., Avcar, M.: Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01168-8

    Article  Google Scholar 

  73. Abouelregal, A.E.: On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J. Appl. Comput. Mech. 6(3), 445–456 (2020). https://doi.org/10.22055/JACM.2019.29960.1649

    Article  Google Scholar 

  74. Benhamed, M.M., Abouelrega, A.E.: Influence of temperature pulse on a nickel microbeams under couple stress theory. J. Appl. Comput. Mech. 6(4), 777–787 (2020). https://doi.org/10.22055/JACM.2019.30918.1789

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Bourada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebai, B., Bouhadra, A., Bousahla, A.A. et al. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT. Arch Appl Mech 91, 3403–3420 (2021). https://doi.org/10.1007/s00419-021-01973-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01973-7

Keywords

Navigation