Skip to main content
Log in

Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Flavonoids belong to polyphenolic compounds, which are widely distributed in plants and have rich functions. Euryale ferox Salisb is an important medicinal and edible homologous plant, and flavonoids are its main functional substances. However, the biosynthesis mechanism of flavonoids in E. ferox is still poorly understood. To explore the dynamic changes of flavonoid biosynthesis during the development of E. ferox seeds, the targeted flavonoid metabolome was determined. A total of 129 kinds of flavonoid metabolites were characterized in the seeds of E. ferox, including 11 flavanones, 8 dihydroflavanols, 16 flavanols, 29 flavones, 3 isoflavones, 12 anthocyanins, 29 flavonols, 6 flavonoid carbonosides, 3 chalcones and 13 proanthocyanidins. The relative content of flavonoid metabolites accumulated continuously during the development of E. ferox seeds, and reached the highest at T30. In transcriptome, the expression of key genes in the flavonoid pathway, such as PAL, CHS, F3H, FLS, ANS, was highest in T30, which was consistent with the trend of metabolites. Six candidate transcription factors (R2R3MYBs and bHLHs) may affect the biosynthesis of flavonoids by regulating the expression of structural genes. Furthermore, transcriptome analysis and exogenous ABA and SA treatment demonstrated that ABA (PYR1, PP2Cs, SnRK2s) and SA (NPR1) are involved in the positive regulation of flavonoid biosynthesis. This study clarified the differential changes of flavonoid metabolites during the development of E. ferox seeds, confirmed that ABA and SA promote the synthesis of flavonoids, and found key candidate genes that are involved in the regulation of ABA and SA in the positive regulation of flavonoid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adar E, Hurst M, Finin T, Glance N, Nicolov N, Tseng BL (2009) Proceedings of the third international conference on weblogs and social media, ICWSM 2009, San Jose, California, USA, May 17–20, 2009. The AAAI Press (ISBN 978-1-57735-421-5)

  • An JP, Wang XF, Li YY, Song LQ, Zhao LL, You CX, Hao YJ (2018) EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiol 178(2):808–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin MB (2003) The chalcone synthase superfamily of type III polyketide synthases. ChemInform 20(1):79–110

    CAS  Google Scholar 

  • Ayub RA, Bosetto L, Galvão CW, Etto RM, Inaba J, Lopes PZ (2016) Abscisic acid involvement on expression of related gene and phytochemicals during ripening in strawberry fruit Fragaria × ananassa cv. Camino Real. Sci Hortic 203:178–184

    Article  CAS  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380

    Article  CAS  PubMed  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Legrand MJTPC (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19(1):148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlos G, Fraga BHC, Moore RJ, Chemistry EMZJA (2010) Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal Chem 82(10):4165–4173

    Article  CAS  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Xia RJMP (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Liu L, Yuan C, Guan J (2016) Molecular characterization of ethylene-regulated anthocyanin biosynthesis in plums during fruit ripening. Plant Mol Biol Rep 34(4):777–785

    Article  CAS  Google Scholar 

  • Colanero S, Tagliani A, Perata P, Gonzali S (2020) Alternative splicing in the anthocyanin fruit gene encoding an R2R3 MYB transcription factor affects anthocyanin biosynthesis in tomato fruits. Plant Commun. https://doi.org/10.1016/j.xplc.2019.100006

    Article  PubMed  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115(3):1155–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deluc L et al (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140(2):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147(4):2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson L, Kettanehwold N, Trygg J, Wikström C, Wold S (2006) Multi-and megavariate data analysis: part I: basic principles and applications. Umetrics Inc, Umeå. https://doi.org/10.1201/b14117-9

    Book  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49(3):414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang F, Huang WD (2013) Salicylic acid modulated flavonol biosynthesis in three key phases during grape berry development. Eur Food Res Technol 237(3):441–448

    Article  CAS  Google Scholar 

  • Ferreyra MLF, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions and biotechnological applications. Front Plant Sci. https://doi.org/10.3389/fpls.2012.00222

    Article  Google Scholar 

  • Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K (2006) Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci Biotechnol Biochem 70(3):632–638

    Article  CAS  PubMed  Google Scholar 

  • Gondor OK, Tibor J, Vilmos S, Magda P, Imre M, Adak MK, Ervin B, Gabriella S (2016) Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01447

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/MYB transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827

    Article  CAS  PubMed  Google Scholar 

  • Hammer DPE (1995) Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol 108(1):47–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu DG, Sun CH, Ma QJ, You CX, Hao YJ (2016) MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiol 170(3):1315–1330

    Article  CAS  PubMed  Google Scholar 

  • Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18(9):477–483

    Article  CAS  PubMed  Google Scholar 

  • Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Yong IP, Yoo SD, Choi SB (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154(3):1514–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Liu C, Yan D, Wen X, Liu Y, Wang H, Dai J, Zhang Y, Liu Y, Zhou B (2017) MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’. J Exp Bot 68(5):1055–1069

    Article  CAS  PubMed  Google Scholar 

  • Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Masuda T, Noji SJP (2015) Light and abscisic acid independently regulated FaMYB10 in Fragaria × ananassa fruit. Planta 241(4):953–965

    Article  CAS  PubMed  Google Scholar 

  • Koes RE, Quattrocchio F, Mol JJB (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16(2):123–132

    Article  CAS  Google Scholar 

  • Laura MP, Guadalupe CL, Francisco AR, Thomas H, Ludwig R, Antonio RF, Luis CJ, Wilfried S, Juan MB, Rosario BP (2013) MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J Exp Bot 65(2):401–417

    Google Scholar 

  • Leng N, Dawson JA, Thomson JA, Ruotti V et al (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29(8):1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepiniec LC, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57(1):405–430

    Article  CAS  PubMed  Google Scholar 

  • Li SZ (2004) Compendium of Materia Medica, vol 33. People’s Medical Publishing House, Beijing, pp 1902–1904

    Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, Mcghie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10(1):1–17

    Article  CAS  Google Scholar 

  • Liu Z, Shi MZ, Xie DY (2014) Regulation of anthocyanin biosynthesis in Arabidopsis thalianared pap1-D cells metabolically programmed by auxins. Planta 239(4):765–781

    Article  CAS  PubMed  Google Scholar 

  • Liu X, He Z, Yin Y, Xu X, Wu W, Li L (2018) Transcriptome sequencing and analysis during seed growth and development in Euryale ferox Salisb. BMC Genom. https://doi.org/10.1186/s12864-018-4707-9

    Article  Google Scholar 

  • Maloney GS, Dinapoli KT, Muday GKJPP (2014) The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development. Plant Physiol 166(2):614–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mou W, Li D, Luo Z, Mao L, Ying T (2015) Transcriptomic analysis reveals possible influences of aba on secondary metabolism of pigments, flavonoids and antioxidants in tomato fruit during ripening. PLoS ONE 10(6):e0129598. https://doi.org/10.1371/journal.pone.0129598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Zhao Y, Yin L, Gao L, Bai S (2019) Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnol J 18(5):1223–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacheco AC, Cabral CDS, Fermino ESDS, Aleman CC (2013) Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. J Med Plants Res 7(42):3158–3163

    Google Scholar 

  • Pang Y, Shen G, Wu W, Liu X, Lin J, Tan F, Sun X, Tang K (2005) Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Sci 168(6):1525–1531

    Article  CAS  Google Scholar 

  • Pattanaik S, Xie CH, Ling Y (2008) The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength. Planta 227(3):707–715

    Article  CAS  PubMed  Google Scholar 

  • Pelletier MK, Burbulis IE, Winkel-Shirley B (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol Biol 40(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Pena-Neira A, Villalobos-Gonzalez L, Pastenes C, Ibanez F (2016) Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: gene expression and metabolite content. Plant Physiol Biochem 105:213–223

    Article  PubMed  CAS  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330(6009):1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The Jasmonate-ZIM-Domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23(5):1795–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren W, Qiao Z, Wang H, Zhu L, Li Z (2003) Flavonoids: promising anticancer agents. Med Res Rev 23(4):519–534

    Article  CAS  PubMed  Google Scholar 

  • Roubelakis-Angelakis KA (ed) (2009) Grapevine molecular physiology and biotechnology. Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-90-481-2305-6

    Book  Google Scholar 

  • Routaboul J-M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot 63(10):3749–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu AK, Gray DJ, Lu J, Gu L (2011) Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem 126(3):982–988

    Article  CAS  Google Scholar 

  • Skerget M, Kotnik P, Hadolin M, Hras AR, Simonic M, Knez ZJFC (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem 89(2):191–198

    Article  CAS  Google Scholar 

  • Song CW, Wang SM, Zhou LL, Hou FF, Wang KJ, Han QB, Li N, Cheng YX (2011) Isolation and identification of compounds responsible for antioxidant capacity of Euryale ferox seeds. J Agric Food Chem 59(4):1199–1204

    Article  CAS  PubMed  Google Scholar 

  • Stefan Czemmel RS, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50(4):660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Hu X, Lu G, Odelland JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54(5):623–639

    Article  CAS  PubMed  Google Scholar 

  • Sun HL, Zhang YQ, Xie XY, Che YY (2014) Studies on chemical constituents from seeds of Euryale ferox. J Chin Med Mater 37(11):2019–2021

    CAS  Google Scholar 

  • Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L (2015) Molecular and biochemical analysis of chalcone synthase from freesia hybrid in flavonoid biosynthetic pathway. PLoS ONE 10(3):e0119054. https://doi.org/10.1371/journal.pone.0119054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142(3):1216–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Fang Z, Liu M, Zhao D, Tao JJB (2020) Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall.). 3 Biotech. https://doi.org/10.1007/s13205-020-2063-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Treutter D (2010) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7(6):581–591

    Article  CAS  Google Scholar 

  • Ueda H, Yamazaki C, Yamazaki MJB, Bulletin P (2002) Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Bicl Pharm bull 25(9):1197–1202

    Article  CAS  Google Scholar 

  • Walker AR, Lee E, Bogs J, Mcdavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49(5):772–785

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tu H, Wan J, Chen W, Liu X, Luo J, Xu J, Zhang H (2016) Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem 199:8–17

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f.niedzwetzkyana). Plant J 90(2):276–292

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-C, Wang N, Xu H-F, Jiang S-H, Fang H-C, Su M-Y (2018) Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Hortic Res. https://doi.org/10.1038/s41438-018-0068-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q (2019) Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J 101(3):637–652

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang H, Yang Y, Li M, Zhang Y, Liu J, Dong J, Li J, Butelli E, Xue Z, Wang A, Wang G, Martin C, Jin W (2020) The control of red colour by a family of MYB transcription factors in octoploid strawberry (Fragaria × ananassa) fruits. Plant Biotechnol J 18(5):1169–1184

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27(2):327–338

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5(3):218–223

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41:801–807

    Article  CAS  Google Scholar 

  • Xu W, Grain D, Bobet S, Gourrierec JL, Thévenin J, Kelemen Z, Lepiniec L, Dubos C (2014) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytol 202(1):132–144

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lc L (2015) Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci 20(3):176–185

    Article  CAS  PubMed  Google Scholar 

  • Yao LH (2004) Flavonoids in food and their health benefits. Plant Food Hum Nutr 3(59):113–122

    Article  CAS  Google Scholar 

  • Yong L, Shi R, Xia W, Shen HMJCCDT (2008) Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Tar 8(7):634–646

    Article  Google Scholar 

  • Zhang R, Chen X-L, Zhang Y-M, Chen X-S, Wang C-Z, Wang Y-T (2015) Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tissue Organ Culture 120(1):325–337

    Article  CAS  Google Scholar 

  • Zhu ZJ, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, Siuzdak GJNP (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc 8(3):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 31902002) and China Agriculture Research System (CARS-24).

Author information

Authors and Affiliations

Authors

Contributions

PW and AL conceived and designed the experimental design. LL contributed to the interpretation of the results and coordinated the study. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to LiangJun Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Liu, A. & Li, L. Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Mol Genet Genomics 296, 953–970 (2021). https://doi.org/10.1007/s00438-021-01790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01790-1

Keywords

Navigation