Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Phyto-fabrication of Iron Nanoparticles: Characterization and Antibacterial Capacity

Author(s): Afrah E. Mohammed*, Asma S. Algebaly and Mudawi M. Elobeid

Volume 17, Issue 2, 2021

Published on: 17 August, 2020

Page: [307 - 314] Pages: 8

DOI: 10.2174/1573413716999200817105934

Price: $65

Abstract

Introduction: Fabrication of iron nanoparticles (FeNPs) has recently attracted considerable interest due to the varied applications of FeNPs in remediation technologies.

Objective: The current study aimed to develop a green technology approach to fabricate FeNPs by using extracts from two different plant sources, Azadirachta indica leaf and Calligonum comosum root.

Methods: A mixture of FeCl2 and FeCl3 was used to react with the plant extracts which are considered as reducing and stabilizing agents for the generation of FeNPs in one step. Spectroscopy and microscopy techniques were used for the characterization of the FeNPs.

Results: Immediately after mixing the iron solution and the plant extracts, the color of the solution changed to dark brown indicating conversion of Fe ions to FeNPs. This fabrication of FeNPs was confirmed by Zetasizer, transmission electron microscopy, and scanning electron microscopy. FeNPs fabricated by C. comosum were smaller than those fabricated by A. indica. For both plant sources, FeNPs fabricated using the aqueous extract were smaller than those fabricated with the ethanolic extract. Furthermore, antibacterial ability against two bacterial species was demonstrated.

Conclusion: This study provides evidence that plant extracts can fabricate Fe nanoparticles from Fe ions at room temperature. This technique has potential usage in large-scale production and antibacterial applications, including that it could be recommended for use against antibiotic-resistant bacteria.

Keywords: Phyto-fabrication, iron oxide nanoparticles, Calligonum comosum, Azadirachta indica, antibacterial, antibioticresistant bacteria.

Graphical Abstract
[1]
De, D.; Mandal, S.M.; Gauri, S.S.; Bhattacharya, R.; Ram, S.; Roy, S.K. Antibacterial effect of lanthanum calcium manganate (La0.67Ca0.33MnO3) nanoparticles against Pseudomonas aeruginosa ATCC 27853. J. Biomed. Nanotechnol., 2010, 6(2), 138-144.
[http://dx.doi.org/10.1166/jbn.2010.1113] [PMID: 20738067]
[2]
Dixon, M.B.; Falconet, C.; Ho, L.; Chow, C.W.; O’Neill, B.K.; Newcombe, G. Removal of cyanobacterial metabolites by nanofiltration from two treated waters. J. Hazard. Mater., 2011, 188(1-3), 288-295.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.111] [PMID: 21339048]
[3]
Cai, J.; Chen, S.; Ji, M.; Hu, J.; Ma, Y.; Qi, L. Organic additive-free synthesis of meso-crystalline hematite nanoplates via two-dimensional oriented attachment. CrystEngComm, 2014, 16, 1553-1559.
[http://dx.doi.org/10.1039/C3CE41716F]
[4]
Cuong, N.D.; Khieu, D.Q.; Hoa, T.T.; Quang, D.T.; Viet, P.H.; Lam, T.D.; Hoa, N.D.; Hieu, N.V. Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Mater. Res. Bull., 2015, 68, 302-307.
[http://dx.doi.org/10.1016/j.materresbull.2015.03.069]
[5]
Hasanzadeh, M.; Shadjou, N. Guardia de la, M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC. Trends Analyt. Chem., 2015, 72, 1-9.
[http://dx.doi.org/10.1016/j.trac.2015.03.016]
[6]
Silva, A.K.A.; Espinosa, A.; Kolosnjaj-Tabi, J.; Wilhelm, C.; Gazeau, F. Medical applications of iron oxide nanoparticles. Iron Oxides: From Nature to Applications. Wiley‐VCH Verlag GmbH & Co. KGaA; Faivre, D., Ed.; , 2016, pp. 425-472.
[http://dx.doi.org/10.1002/9783527691395.ch18]
[7]
Walker, J.M.; Zaleski, J.M. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis. Nanoscale, 2016, 8(3), 1535-1544.
[http://dx.doi.org/10.1039/C5NR06700F] [PMID: 26681072]
[8]
Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Sarmah, A.K.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Plant-mediated synthesis andapplications of iron nanoparticles. Mol. Biotechnol., 2018, 60(2), 154-168.
[http://dx.doi.org/10.1007/s12033-017-0053-4] [PMID: 29256163]
[9]
Neuberger, T.; Schopf, B.; Hofmann, H.; Hofmann, M.; von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater., 2005, 293, 483-496.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.064]
[10]
Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Microbial nanoparticle production.Nanobiotechnology: Concepts, Applications and Perspectives. Niemeyer, C.M., Mirkin, C.A., (eds.); Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA, 2004, pp. 126-135.
[http://dx.doi.org/10.1002/3527602453.ch9]
[11]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res., 2008, 10, 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[12]
Rai, M.; Yadav, A.; Gade, A. Current [corrected] trends in phytosynthesis of metal nanoparticles. Crit. Rev. Biotechnol., 2008, 28(4), 277-284.
[http://dx.doi.org/10.1080/07388550802368903] [PMID: 19051106]
[13]
Pattanayak, M.; Nayak, P.L. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (neem). World J. Nano Sci. Technol., 2013, 2, 6-9.
[14]
Wang, Z. Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain. Chem.& Eng., 2013, 1, 1551-1554.
[http://dx.doi.org/10.1021/sc400174a]
[15]
Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Advances, 2014, 4, 53467-53474.
[http://dx.doi.org/10.1039/C4RA08808E]
[16]
Saranya, S.; Vijayarani, K.; Pavithra, S. Green synthesis of iron nanoparticles using aqueous extract of Musa ornata flower sheath against pathogenic bacteria. Indian J. Pharm. Sci., 2017, 79, 688-694.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000280]
[17]
Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroğlu, A.E.; Scott, T.B.; Hallam, R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172(1), 258-266.
[http://dx.doi.org/10.1016/j.cej.2011.05.103]
[18]
Rao, A.; Bankar, A.; Kumar, A.R.; Gosavi, S.; Zinjarde, S. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J. Contam. Hydrol., 2013, 146, 63-73.
[http://dx.doi.org/10.1016/j.jconhyd.2012.12.008] [PMID: 23422514]
[19]
Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.R.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312(5776), 1027-1030.
[http://dx.doi.org/10.1126/science.1125559] [PMID: 16709779]
[20]
Shchukin, D.G.; Schattka, J.H.; Antonietti, M.; Caruso, R.A. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. J. Phys. Chem. B, 2003, 107, 86-90.
[http://dx.doi.org/10.1021/jp0265236]
[21]
Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA, 1999, 96(24), 13611-13614.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[22]
Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 801-804.
[http://dx.doi.org/10.1016/j.saa.2013.09.054] [PMID: 24094918]
[23]
Tripathy, A.; Raichur, A.M.; Chandrasekaran, N.; Prathna, T.; Mukherjee, A. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J. Nanopart. Res., 2010, 12, 237-246.
[http://dx.doi.org/10.1007/s11051-009-9602-5]
[24]
Lade, B.D.; Shanware, A.S. hytonanofabrication: Methodology and Factors Affecting Biosynthesis of Nanoparticles IntechOpen, Available from:, https://www.intechopen.com/onlinefirst/ phytonanofabrication-methodology-and-factors-affectingbiosynthesis- of-nanoparticles
[25]
Vokou, D.; Katradi, K.; Kokkini, S. Ethnobotanical survey of Zagori (Epirus, Greece), a renowned centre of folk medicine in the past. J. Ethnopharmacol., 1993, 39(3), 187-196.
[http://dx.doi.org/10.1016/0378-8741(93)90035-4] [PMID: 8258976]
[26]
Ahmed, H.; Moawad, A.; Owis, A.; AbouZid, S.; Ahmed, O. Flavonoids of Calligonum polygonoides and their cytotoxicity. Pharm. Biol., 2016, 54(10), 2119-2126.
[http://dx.doi.org/10.3109/13880209.2016.1146778] [PMID: 26922854]
[27]
Mohammed, A.E. Arta (Calligonum comosum, L’Her.) shoot extracts: biomediator in silver nanoparticles formation and antimycotic potential. Nano Biomed. Eng. J., 2016, 8(3), 128-135.
[http://dx.doi.org/10.5101/nbe.v8i3.p128-135]
[28]
Algebaly, A.S.; Mohammed, A.E.; Abutaha, N.; Elobeid, M.M. Biogenic synthesis of silver nanoparticles: Antibacterial and cytotoxic potential. Saudi J. Biol. Sci., 2020, 27(5), 1340-1351.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.014] [PMID: 32346344]
[29]
Omoja, V.U.; Anaga, A.O.; Obidike, I.R.; Ihedioha, T.E.; Umeakuana, P.U.; Mhomga, L.I.; Asuzu, I.U.; Anika, S.M. The effects of combination of methanolic leaf extract of Azadirachta indica and diminazene diaceturate in the treatment of experimental Trypanosoma brucei infection in rats. Asian Pac. J. Trop. Med., 2011, 4(5), 337-341.
[http://dx.doi.org/10.1016/S1995-7645(11)60099-0] [PMID: 21771672]
[30]
Ahmed, S. Saifullah, Mudasir, A.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9, 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[31]
Asimuddin, M.; Shaik, M.R.; Adil, S.F.; Rafiq, M.; Siddiqui, H.; Alwarthan, A.; Jamil, K.; Khan, M. Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects. J. King Saud Univ. Sci., 2020, 32(1), 648-656.
[http://dx.doi.org/10.1016/j.jksus.2018.09.014]
[32]
Zambri, N.D.S.; Taib, N.I.; Abdul Latif, F.; Mohamed, Z. Utilization of neem leaf extract on biosynthesis of iron oxide nanoparticles. Molecules, 2019, 24(20), 3803.
[http://dx.doi.org/10.3390/molecules24203803] [PMID: 31652583]
[33]
Ghazanfar, S.A. Handbook of Arabian medicinal plants, 1st ed; CRC Press, 1994, p. 272.
[34]
Kamil, M.; Jayaraj, A.F.; Ahmad, F.; Gunasekhar, C.; Samuel, S.; Chan, K.; Habibullah, M.; Attas, A. Pharmacognostic and phytochemical standardisation of Calligonum comosum. J. Pharm. Pharmacol., 2000, 52(Suppl.), 262.
[35]
Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci., 2016, 9(1), 109-115.
[http://dx.doi.org/10.1016/j.jrras.2015.11.001]
[36]
Leela, K.; Anchana, D.C. A study on the applications of silver nanoparticle synthesized using the aqueous extract and the purified secondary metabolites of lichen Parmelia perlata. Int. J. Pharm. Sci. Invent., 2017, 6, 42-59.
[37]
Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev., 2018, 53(9), 703-746.
[http://dx.doi.org/10.1080/05704928.2018.1426595]
[38]
Zahariev, I.; Piskin, M.; Karaduman, E.; Ivanova, D.; Markova, I.; Fachikov, L. FTIR spectroscopy method for investigation of Co-Ni nanoparticle nanosurface phenomena. J. Chem. Technol. Metall., 2017, 52(5), 916-928.
[39]
Demir, A.; Topkaya, R.; Baykal, A. Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron, 2013, 65, 282-287.
[http://dx.doi.org/10.1016/j.poly.2013.08.041]
[40]
Yuvakkumar, R.; Hong, S.I. Green synthesis of spinel magnetite iron oxide nanoparticles. Adv. Mat. Res., 2014, 1051, 39-42.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.1051.39]
[41]
Kanagasubbulakshmi, S.; Kadirvelu, K. Green synthesis of iron oxide nanoparticles using Lagenaria Siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J., 2017, 2(4), 422-427.
[http://dx.doi.org/10.14429/dlsj.2.12277]
[42]
Dana, E.; Taha, A.; Afkar, E. Green synthesis of iron nanoparticles by Acacia nilotica pods extract and its catalytic, adsorption, and antibacterial activities. Appl. Sci. (Basel), 2018, 8, 1922.
[http://dx.doi.org/10.3390/app8101922]
[43]
Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy, 2006, 83, 132-140.
[http://dx.doi.org/10.1016/j.hydromet.2006.03.019]
[44]
Nithya, R.; Ragunathan, R. Synthesis of silver nanoparticles using Pleurotus sajor caju and its antimicrobial study. Dig. J. Nanomater. Biostruct., 2009, 4, 623-629.
[45]
Mohamed, Y.M.; Azzam, A.M.; Amin, B.H.; Safwat, N.A. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr. J. Biotechnol., 2015, 14, 1234-1241.
[http://dx.doi.org/10.5897/AJB2014.14286]
[46]
Long, T.E. Repurposing thiram and disulfiram as antibacterial agents for multi-drug 1 resistant Staphylococcus aureus infections. Antimicrob. Agents Chemother., 2017, 61(9), e00898-e17.
[http://dx.doi.org/10.1128/AAC.00898-17] [PMID: 28674046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy