Skip to main content
Log in

A novel approach in heating phenomena of the drift plasmas in the presence of rotating magnetic field: Appearance of anti-Hermitian part in dielectric tensor

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Employing the dielectric tensor elements and taking into account the time variations of a rotating magnetic field (RMF) leading to the electric field generation responsible for particle acceleration, we develop a closed mathematical form for the radiated power absorbed by a long column containing multilayer inhomogeneous drift plasma with elliptical cross-section. To this end, cold-fluid equations are employed to drive explicit expressions for the dielectric tensor elements by taking into account the effect of RMF. Results reveal that the dielectric tensor has an anti-Hermitian part responsible for dissipation which comes from the rotation of external magnetic field. In order to describe the effective force exerted on the plasma, a general expression is obtained for the ponderomotive force by utilising the electric field components presented in this work. To check the accuracy of the obtained results, some limiting cases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J Yoob, M Yamada, H Ji, J J-Almonte and C E Myers, Phys. Plasmas 21, 055706 (2014)

  2. J T Dahlin, J F Drake and M Swisdak, Phys. Plasmas 21, 092304 (2014)

    Article  ADS  Google Scholar 

  3. E E Grigorenko, E A Kronberg and P W Daly, Cosmic Res. 55, 57 (2017)

  4. V V Zaitsev and V Stepanov, Sol. Phys. 290, 3559 (2015)

    Article  ADS  Google Scholar 

  5. AO Benz, Living Rev. Sol. Phys. 14, 2 (2017)

    Article  ADS  Google Scholar 

  6. A Fasoli, S Brunner, W A Cooper, J P Graves, P Ricci, O Sauter and L Villard Nature Phys. 12, 411 (2016)

  7. T Furukawa, K Takizawa, K Yano, D Kuwahara and S Shinohara, Rev. Sci. Instrum. 89, 043505 (2018)

    Article  ADS  Google Scholar 

  8. S Otsuka, K Takizawa, Y Tanida, D Kuwahara and S Shinohara Plasma Fusion Res. 10, 3401026 (2015)

  9. M Sheikholeslami and M M Rashidi, Eur. Phys. J. Plus 130, 115 (2015)

    Article  Google Scholar 

  10. M Ettehadi-Abari, M Sedaghat, B Shokri and M Ghorbanalilu, Plasma Phys. Control. Fusion 57, 085001 (2015)

    Article  ADS  Google Scholar 

  11. H Hora, G Miley, P Lalousis, S Moustaizis, K Clayton and D Jonas, IEEE Trans. Plasma Sci. 42, 640 (2014)

    Article  ADS  Google Scholar 

  12. S Gales, D L Balabanski, F Negoita, O Tesileanu, C A Ur, D Ursescu and N V Zamfir, Phys. Scr. 91, 093004 (2016)

    Article  ADS  Google Scholar 

  13. M W Grossman and T A Shepp, IEEE Trans. Plasma Sci. 19, 1114 (1991)

    Article  ADS  Google Scholar 

  14. G Dimonte, B M Lamb and G J Morales, Plasma Phys. 25, 713 (1983)

    Article  ADS  Google Scholar 

  15. V Malka, Laser Particle Beams 20, 217 (2002)

    Article  Google Scholar 

  16. M Camarda , S Scalese and A La Magna, Electrophoresis 36, 1396 (2015)

    Article  Google Scholar 

  17. A R Niknam, S Barzegar and M Hashemzadeh, Phys. Plasmas 20, 122117 (2013)

    Article  ADS  Google Scholar 

  18. A R Niknam, A Aliakbari, S Majedi, F Haji Mirzaei and M Hashemzadeh, Phys. Plasmas 18, 112305 (2011)

  19. P Lalousis, S Moustaizis, H Hora and G H Miley, J. Fusion Energ. 34, 62 (2015)

    Article  Google Scholar 

  20. A Colatis, G Duchateau, X Ribeyre and V Tikhonchuk, Phys. Rev. E 91, 013102 (2015)

    Article  ADS  Google Scholar 

  21. A F Alexandrov, L S Bogdankevich and A A Rukhadze, Principle of plasma electrodynamics (Springer-Verlag, Heidelberg, 1984)

    Book  Google Scholar 

  22. F Bakhtiari, M Esmaeilzadeh and B Ghafary, Phys. Plasmas 24, 073112 (2017)

    Article  ADS  Google Scholar 

  23. R K Singh, M Singh, S K Rajouria and R P Sharma, Phys. Plasmas 24, 103103 (2017)

    Article  ADS  Google Scholar 

  24. C Schriever, F Bianco, M Cazzanelli, M Ghulinyan, C Eisenschmidt, J de Boor, A Schmid, J Heitmann, L Pavesi and J Schilling, Adv. Opt. Mater. 3, 129 (2015)

    Article  Google Scholar 

  25. R Zhang, L-H Cheng, R-A Tang and J-K Xuea, Phys. Plasmas 23, 093105 (2016)

    Article  ADS  Google Scholar 

  26. R Zhang, L-H Cheng and J-K Xuea, Phys. Plasmas 22, 123109 (2015)

    Article  ADS  Google Scholar 

  27. J Guo, X Liu, N Jiang, A K Yetisen, H Yuk, C Yang, A Khademhosseini, X Zhao and S H Yun, Adv. Mater. 28, 10244 (2016)

    Article  Google Scholar 

  28. M A Lieberman and A J Lichtenberg, Principles of plasma discharges and materials processing, 2nd Edn (John Wiley and Sons, 2005)

  29. Y P Raizer, Gas discharge physics (Springer-Verlag Berlin Heidelberg, 1991)

    Book  Google Scholar 

  30. N A Krall and A W Trivelpiece, Principles of plasma physics (McGraw Hill, New York, 1973)

    Book  Google Scholar 

  31. S Eliezer, The interaction of high-power lasers with plasmas (CRC Press, 2002)

    Book  Google Scholar 

  32. A Abdoli-Arani, Phys. Plasma 21, 023506 (2014)

    Article  ADS  Google Scholar 

  33. A Abdoli-Arani, Plasma Sources Sci. Technol. 23, 065027 (2014)

    Article  ADS  Google Scholar 

  34. S Safari and B Jazi, J. Appl. Phys. 121, 204304 (2017)

    Article  ADS  Google Scholar 

  35. B Jazi, A Abdoli-Arani, Z Rahmani, R Ramezani-Arani and M Monemzadeh, Phys. Lett. A 374, 4617 (2010)

    Article  ADS  Google Scholar 

  36. B Jazi, A Abdoli-Arani, Z Rahmani, M Monemzadeh, and R Ramezani-Arani, Waves Random Complex Media. 21,12 (2011)

    Article  ADS  Google Scholar 

  37. B Jazi, A R Niknam and A Abdoli-Arani, IEEE Trans. Plasma Sci. 40, 414 (2012)

    Article  ADS  Google Scholar 

  38. A Abdoli-Arani and R Ramezani-Arani, Waves Random Complex Media 22, 459 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. S Safari and B Jazi, Phys. Plasmas 24, 052106 (2017)

    Article  ADS  Google Scholar 

  40. S Safari and B Jazi, Eur. Phys. J. Plus 132, 261 (2017)

    Article  Google Scholar 

  41. B Yi, Y Pan, Y Ding, M Zhang, B Rao, H Xu and M Li, IEEE Trans. Plasma Sci. 43, 594 (2015)

    Article  ADS  Google Scholar 

  42. M Mavroudi, S P Kaldis and G P Sakellaropoulos, J. Membr. Sci. 272, 103 (2006)

    Article  Google Scholar 

  43. W Zhe, Y Yang, W Qiuliang and S Tao, IEEE Trans. Appl. Supercond. 18, 887 (2008)

    Article  ADS  Google Scholar 

  44. Yu M Gelfgat, J. Crystal Growth 198\(/\)199, 165 (1999)

  45. Z Yan, X Li, Z Cao, X Zhang and T Li, Mater. Lett. 62, 4389 (2008)

    Article  Google Scholar 

  46. R Rakoczy, M Konopacki and K Fijałkowski, Biochem. Eng. J. 109, 43 (2016)

    Article  Google Scholar 

  47. P Dold and K W Benz, Prog. Cryst. Growth Charact. Mater. 38, 39 (1999)

    Article  Google Scholar 

  48. I R Jones, Phys. Plasmas 6, 1950 (1999)

    Article  ADS  Google Scholar 

  49. P Chylek, V Ramaswamy, R Cheng and R G Pinnick, Appl. Opt. 2, 2980 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Safari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, S., Jazi, B. A novel approach in heating phenomena of the drift plasmas in the presence of rotating magnetic field: Appearance of anti-Hermitian part in dielectric tensor. Pramana - J Phys 95, 84 (2021). https://doi.org/10.1007/s12043-021-02100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02100-5

Keywords

PACS

Navigation