Skip to main content
Log in

Highly transparent and conducting Al-doped ZnO as a promising material for optoelectronic applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Al-doped ZnO (AZO) thin films have been deposited onto the glass substrate via sol–gel spin coating method with different Al concentrations (0, 2, 4, 6, 8, 10 at.%). The growth orientation and crystalline structure were investigated by studying the X-ray diffraction (XRD) pattern. The XRD results reveal that the thin films show wurtzite phase with preferential orientation along the c-axis (002) plane for lower concentration of Al. The diffraction peak gets weaker corresponding to plane (002) and the diffraction peaks of planes (101) and (100) become stronger with higher concentration of Al content. The field emission scanning electron microscopy (FE-SEM) images confirm that thin films show wrinkle-type structure with a few minor cracks. The transmittance spectra of thin films were recorded by UV–Vis spectrophotometer in the wavelength range 350–800 nm. The optical transmittance of thin films was found to be above 85%. The band-gap energy of AZO films varies from 3.16 eV to 3.27 eV with increasing concentration of Al. The better conductivity and high optical transparency of AZO films make them a more promising alternative to indium-doped tin oxide (ITO) for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D S Ginley and C Bright, MRS Bull. 25, 15 (2000)

    Article  Google Scholar 

  2. B G Lewis and D C Paine, MRS Bull. 25, 22 (2000)

    Article  Google Scholar 

  3. H Liu, V Avrutin, N Izyumskaya, Ü Özgür and H Morkoç, Superlatt. Microstruct. 48, 458 (2010)

    Article  ADS  Google Scholar 

  4. X Hou, B Liu, X Wang, Z Wang, Q Wang, D Chen and G Shen, Nanoscale 5, 7831 (2013)

    Article  ADS  Google Scholar 

  5. Y J Choi, S C Gong, C S Park, H S Lee, J G Jang, H J Chang, G Y Yeom and H H Park, ACS App. Mater. Interface 5, 3650 (2013)

  6. N Ma, K Suematsu, M Yuasa, T Kida and K Shimanoe, ACS Appl. Mater. Interface 7, 5863 (2015)

  7. A A Al-Ghamdi, O A Al-Hartomy, M E Okr, A M Nawar, S El-Gazzar, F El-Tantawy and F Yakuphanoglu, Spectrochem. Acta A 131, 512 (2014)

    Article  ADS  Google Scholar 

  8. K U Sim, S W Shin, A V Moholkar, J H Yun, J H Moon and J H Kim, Curr. Appl. Phys. 10, 463 (2010)

    Article  ADS  Google Scholar 

  9. T Minami, Thin Solid Films 516, 1314 (2008)

    Article  ADS  Google Scholar 

  10. E Fortunato, D Ginley, H Hosono and D C Paine, MRS Bull. 32, 242 (2007)

    Article  Google Scholar 

  11. B Bayraktaroglu, K Leedy and R Bedford, Appl. Phys. Lett. 93, 022104 (2008)

  12. K Ellmer, J. Phys. D 34, 3097 (2001)

    Article  ADS  Google Scholar 

  13. D G Ayana, V Prusakova, C Collini, M V Nardi, R Tatti, M Bortolotti, L Lorenzelli, A Chiappini, A Chiasera, M Ferrari and L Lunelli, AIP Adv. 6, 111306 (2016)

  14. M Aleksandrova, N Kurtev, V Videkov, S Tzanova and S Schintke, Microelec. Eng. 145, 112 (2015)

    Article  Google Scholar 

  15. Y T Park, A Y Ham, Y H Yang and J C Grunlan, RSC Adv. 1, 662 (2011)

    Article  ADS  Google Scholar 

  16. G Eda, G Fanchini and M Chhowalla, Nat. Nanotechnol. 3, 270 (2008)

    Article  Google Scholar 

  17. Z Wu, Z Chen, X Du, J M Logan, J Sippel, M Nikolou, K Kamaras , J R Reynolds, D B Tanner, A F Hebard and A G Rinzler, Science 305, 1273 (2004)

    Article  ADS  Google Scholar 

  18. M Rouchdi, E Salmani, B Fares, N Hassanain and A Mzerd, Results Phys. 7, 620 (2017)

  19. V Ganesh, G F Salem, I S Yahia and F Yakuphanoglu, J. Elec. Mater. 47, 1798 (2018)

    Article  ADS  Google Scholar 

  20. A G Kumar, L Obulapathi, T S Sarmash, D J Rani, M Maddaiah, T S Rao and K Asokan, JOM 67, 834 (2015)

    Article  Google Scholar 

  21. S De, T M Higgins, P E Lyons, E M Doherty, P N Nirmalraj, W J Blau, J J Boland and J N Coleman, ACS Nano 3, 1767 (2009)

    Article  Google Scholar 

  22. B Sarma, D Barman and B K Sarma, Appl. Surf. Sci. 479, 786 (2019)

    Article  ADS  Google Scholar 

  23. Q Pan and X Song, Mater. Sci. Poland 35, 374 (2017)

  24. S Ilican, Y Caglar and M Caglar, J. Optoelctron. Adv. Mater. 10, 2578 (2008)

    Google Scholar 

  25. W Y Zhang, D K He, Z Z Liu, L J Sun and Z X Fu, Optoelectron. Adv. Mater. Rapid Commun. 4, 1651 (2010)

    Google Scholar 

  26. L H Van, M H Hong and J Ding, J. Alloys Compd. 449, 207 (2008)

    Article  Google Scholar 

  27. C H Zhai, R J Zhang, X Chen, Y X Zheng, SY Wang, J Liu, N Dai and L Y Chen, Nanoscale Res. Lett. 11, 1 (2016)

    Article  ADS  Google Scholar 

  28. M H Aslan, A Y Oral, E Menşur, A Gül and E N Başaran, Solar Energy Mater. Sol. Cells 82, 543 (2004)

    Google Scholar 

  29. H Kato, M Sano, K Miyamoto and T Yao, J. Crystal Growth 237, 538 (2002)

    Article  ADS  Google Scholar 

  30. J P Kim, S A Lee, J S Bae, S K Park, U C Choi and C R Cho, Thin Solid Films 516, 5223 (2008)

    Article  ADS  Google Scholar 

  31. P L Gareso, N Rauf, E Juarlin, Sugianto and A Maddu, AIP Conf. Proc. 1, 60 (2014)

  32. Y S Kim and W P Tai, Appl. Surf. Sci. 253, 4911 (2007)

    Article  ADS  Google Scholar 

  33. S Fernandez and F B Naranjo, Solar Energy Mater. Sol. Cells 94, 157 (2010)

    Article  Google Scholar 

  34. G J Fang, D J Li and B L Yao, Phys. Status Solidi A 193, 139 (2002)

    Article  ADS  Google Scholar 

  35. A Sharmin, S Tabassum, M S Bashar and Z H Mahmood, J. Theor. Appl. Phys. 13, 123 (2019)

    Article  ADS  Google Scholar 

  36. Z C Xia and J W Hutchinson, J. Mech. Phys. Solids 48, 1107 (2000)

    Article  ADS  Google Scholar 

  37. J K Rajput, T K Pathak, V Kumar, M Kumar and L P Purohit, Surf. Interfaces 6, 11 (2017)

    Article  Google Scholar 

  38. G K Upadhyay, J K Rajput, T K Pathak, V Kumar and L P Purohit, Vacuum 160, 154 (2019)

  39. V Shelke, B K Sonawane, M P Bhole and D S Patil, J. Mater. Sci. Mater. Electron. 23, 451 (2012)

    Article  Google Scholar 

  40. B R Bennett, A R Soref and J A Del Alamo, IEEE J. Quantum Electron. 26, 113 (1990)

    Article  ADS  Google Scholar 

  41. D Djouadi, A Chelouche and A Aksas, J. Mater. Environ. Sci. 3, 585 (2012)

    Google Scholar 

  42. V S Rana, J K Rajput, T K Pathak and L P Purohit, J. Alloys Compd. 764, 724 (2018)

    Article  Google Scholar 

  43. S A Knickerbocker and A K Kulkarni, J. Vac. Sci. Technol. 13, 1048 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Himanshu Gupta or L P Purohit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, R., Gupta, H. & Purohit, L.P. Highly transparent and conducting Al-doped ZnO as a promising material for optoelectronic applications. Pramana - J Phys 95, 87 (2021). https://doi.org/10.1007/s12043-021-02123-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02123-y

Keywords

PACS Nos

Navigation