Skip to main content
Log in

Variation in the ionome of tropical ‘metal crops’ in response to soil potassium availability

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

In tropical ultramafic soils, potassium (K) is typically the most growth limiting nutrient. However, tropical nickel (Ni) hyperaccumulator plants, including Phyllanthus rufuschaneyi and Rinorea cf. bengalensis (which are ‘metal crops’ used in agromining) from Malaysia, have unusually high K shoot accumulation compared to other species, despite naturally growing on severely K-impoverished ultramafic soils. This study aimed to establish the response to soil K availability in relation to uptake of K and other elements in the roots and shoots of P. rufuschaneyi and R. cf. bengalensis.

Methodology

We undertook an experiment in which soluble K was dosed to ultramafic soil in pots with P. rufuschaneyi and R. cf. bengalensis in Sabah (Malaysia).

Results

The results show that root K concentrations increased markedly as the soil K availability increased by 35-fold, whilst the corresponding effect on K accumulation in the shoots of P. rufuschaneyi and R. cf. bengalensis was not significantly different in relation to soil K dosing. Observed divergent responses between root and shoot K accumulation in these species suggests a separate genetic control of K uptake and xylem loading in P. rufuschaneyi and R. cf. bengalensis.

Conclusion

The tight control of root-to-shoot K translocation and constrained K accumulation in shoots under a soil K gradient is likely an adaptive mechanism to the evolution of these species to grow in highly nutrient-impoverished ultramafic soils. This study provides information that will be useful for better nutrient management of tropical Ni metal farms that use K-efficient Ni ‘metal crops’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong MJ, Kirkby EA (1979) Estimation of potassium recirculation in tomato plants by comparison of the rates of potassium and calcium accumulation in the tops with their fluxes in the xylem stream. Plant Physiol 63:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders ‐strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

  • Baker A, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Blevins DG, Hiatt AJ, Lowe RH (1974) The influence of nitrate and chloride uptake on expressed sap pH, organic acid synthesis, and potassium accumulation in higher plants. Plant Physiol 54:82–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brearley F (2005) Nutrient limitation in a Malaysian ultramafic soil. J Trop for Sci 17:596–609

    Google Scholar 

  • Britzke D, da Silva LS, Moterle DF, Rheinheimer D, Bortoluzzi EC (2012) A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. J Soils Sediments 12:185–197

    Article  CAS  Google Scholar 

  • Bouman R, van Welzen P, Sumail S, Echevarria G, Erskine PD, van der Ent A (2018) Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. Bot Stud 59(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433

    Article  CAS  PubMed  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol Plant Mol Biol 31:239–298

    Article  CAS  Google Scholar 

  • Echevarria G (2021) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer, Cham, pp 135–156

    Google Scholar 

  • Ernst W (1974) Schwermetallvegetation der Erde. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Fischer RA (1968) Stomatal opening: Role of potassium uptake by guard cells. Science 160:784–785

    Article  CAS  PubMed  Google Scholar 

  • Galey MC, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud 58:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger DR (1975) Phloem loading. In: Transport in Plants 1, MH Zinrnermann, JA Milburn (Eds.). Springer Verl. Berlin, Heidelberg, pp. 396–431.

  • Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255

    Article  Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mengel K, Haeder HE (1977) Effect of potassium supply on the rate of phloem sap exudation and the composition of phloem sap of Ricinus communis. Plant Physiol 59:282–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz W, Barnabas A, van der Ent A (2016) Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytol 209:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, Merriam G (1981) The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba Province, Zaire. Phytochemistry 20:455–458

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2012) Rhizosphere chemistry in relation to plant nutrition. In: Marschner P (ed) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Academic Press, London, pp 347–368

    Chapter  Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel J-L, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  CAS  Google Scholar 

  • Nkrumah P, Echevarria G, Erskine PD, van der Ent A (2018a) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33:675–685

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018b) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019a) The first tropical ‘metal farm’: Some perspectives from field and pot experiments. J Geochem Explor 198:114–122

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019b) Growth effects in tropical nickel-agromining ‘metal crops’’ in response to nutrient dosing.’ J Plant Nutr Soil Sci 182:715–728

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019c) Soil amendments affecting nickel uptake and growth performance of tropical ‘metal crops’ used for agromining. J Geochem Explor 203:78–86

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019d) Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining ‘metal crops.’ Plant Soil 443:27–39

  • Nkrumah PN, Navarrete Gutiérrez DM, Tisserand R, van der Ent A, Echevarria G, Pollard AJ, Chaney RL, Morel JL (2021) Element case studies: nickel (tropical regions). In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer, Cham, pp 365–383

    Chapter  Google Scholar 

  • Paul ALD, Isnard S, Brearley FQ, Echevarria G, Baker AJM Erskine PD, van der Ent A (2021) Stocks and biogeochemical cycling of soil-derived nutrients in an ultramafic rain forest in New Caledonia. Plant, Cell & Environment. Submitted

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics 6:105–124

    Article  Google Scholar 

  • Proctor J, Woodell SR (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366

    Article  Google Scholar 

  • Prodhan MA, Jost R, Watanabe M, Hoefgen R, Lambers H, Finnegan PM (2016) Tight control of nitrate acquisition in a plant species that evolved in an extremely phosphorus-impoverished environment. Plant, Cell Environ 39:2754–2761

    Article  CAS  Google Scholar 

  • Santiago LS, Wright SJ, Harms KE, Yavitt JB, Korine C, Garcia MN, Turner BL (2012) Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. J Ecol 100:309–316

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2021) Potassium control of plant functions: Ecological and agricultural implications. Plants (basel) 10:419

    Article  CAS  Google Scholar 

  • Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level . Annals of Botany 92:627–634

  • Reeves RD (1992) Hyperaccumulation of nickel by serpentine plants. In: The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover, pp. 253–277

  • Reeves RD, Baker AJM (1984) Studies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Haalaacsy (Cruciferae). New Phytol 98:191–204

    Article  CAS  Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  PubMed  Google Scholar 

  • Roelfsema MR, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate.’ New Phytol 167:665–691

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH (2020) Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry. https://doi.org/10.1007/s10533-020-00704-4

    Article  PubMed Central  Google Scholar 

  • Tripler CE, Kaushal SS, Likens GE, Todd WM (2006) Patterns in potassium dynamics in forest ecosystems. Ecol Lett 9:451–466

    Article  PubMed  Google Scholar 

  • Van Beusichem ML, Kirkby EA, Baas R (1988) Influence of nitrate and ammonium nutrition and the uptake, assimilation, and distribution of nutrients in Ricinus comunis. Plant Physiol 86:914–921

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408

    Article  PubMed  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015a) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  PubMed  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • van der Ent A, Repin R, Sugau J, Wong KM (2015b) Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Aust J Bot 63:204

    Article  Google Scholar 

  • van der Ent A, Erskine P, Sumail S (2015c) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Article  CAS  Google Scholar 

  • van der Ent A, van Balgooy M, van Welzen P (2016a) Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia). Bot Stud 57:19

    CAS  Google Scholar 

  • van der Ent A, Echevarria G, Tibbett M (2016b) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82

    Article  CAS  Google Scholar 

  • van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Scientific Reports 7:41861

  • van der Ent A, Mulligan DR, Repin R, Erskine PD (2018) Foliar elemental profiles in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). Ecol Res 33:659–674

    Article  CAS  Google Scholar 

  • van der Ent A, Ocenar A, Tisserand R, Sugau JB, Erskine PD, Echevarria G (2019) Herbarium X-ray Fluorescence Screening for nickel, cobalt and manganese hyperaccumulation in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58

    Article  CAS  Google Scholar 

  • Veldkamp E, Jongmans AG, Feijtel TC, Veldkamp A, van Breeman N (1990) Alkali basalt gravel weathering in Quaternary Allier River terraces, Limagne, France. Soil Sci Soc Am J 54:1043–1048

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wenzel WW, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ Pollut 104:145–155

    Article  CAS  Google Scholar 

  • White PJ (2012a) Ion Uptake mechanisms of individual cells and roots: Short-distance transport. In: Marschner P (ed) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Academic Press, London, pp 7–47

  • White PJ (2012b) Long-distance transport in the xylem and phloem. In: Marschner P (ed) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Academic Press, London, pp 49–70

  • White PJ, Karley AJ (2010) Potassium. In: Cell Biology of Metals and Nutrients, R. Hell and R.-R. Mendel (Eds.), Plant Cell Monographs 17, pp. 199–224. Springer, Dordrecht

  • Wiggenhauser M, Bigalke M, Imseng M, Keller A, Archer C, Wilcke W, Frossard E (2018) Zinc isotope fractionation during grain filling of wheat and a comparison of zinc and cadmium isotope ratios in identical soil-plant systems. New Phytol 219:195–205

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Sabah Parks for granting permission to conduct research in Kinabalu Park, and the Sabah Biodiversity Council for research permits (JKM/MBS.1000-2/2 Jld. 4 (186)). We thank Deisy Suin for taking care of the nursery. We also thank Richard Yulong, Weiter Minas and Vinson Yempios for their help in the nursery. The French National Research Agency through the national ‘Investissements d’avenir’ program (ANR-10-LABX-21, LABEX RESSOURCES21) is acknowledged for funding support to A. van der Ent and P.N. Nkrumah. P.N. Nkrumah was the recipient of an Australian Government Research Training Program Scholarship and UQ Centennial Scholarship at The University of Queensland, Australia.

Author information

Authors and Affiliations

Authors

Contributions

PNN, GE, PDE, AvdE conceived the study. PNN, GE, PDE, RLC, AvdE designed the study. PNN, PDE, SS, AvdE acquired the data. All authors contributed to data analysis, interpretation of data, drafting of article and final approval of the version submitted.

Corresponding author

Correspondence to Philip Nti Nkrumah.

Additional information

Communicated by Juan Barcelo.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1675 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkrumah, P.N., Echevarria, G., Erskine, P.D. et al. Variation in the ionome of tropical ‘metal crops’ in response to soil potassium availability. Plant Soil 465, 185–195 (2021). https://doi.org/10.1007/s11104-021-04995-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04995-w

Keywords

Navigation