Skip to main content
Log in

Vascular tissue-specific expression of BnaC4.BOR1;1c, an efflux boron transporter gene, is regulated in response to boron availability for efficient boron acquisition in Brassica napus

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

BnaC4.BOR1;1c is required for B acquisition in Brassica napus (B. napus) under low B stress. This study aimed to reveal the B regulatory mechanism of BnaC4.BOR1;1c and its physiological roles in B translocation from roots to shoots and B distribution in shoots.

Methods

Transgenic Arabidopsis plants expressing GUS (β-glucuronidase) under different promoters were generated and the mRNA, and GUS activity was quantitatively measured. The in-situ PCR and immunohistochemistry in B. napus were performed to investigate BnaC4.BOR1;1c expression pattern and localization. Furthermore, assays of B transport and distribution in wild type B. napus and BnaC4.BOR1;1c RNAi lines were carried out to elucidate its physiological roles.

Results

Results showed that BnaC4.BOR1;1c mRNA abundance is negatively correlated with B availability, which was mediated by the 29 nt sequence in the 5′ terminal region of 5’-UTR. Besides, the 5’-UTR simultaneously regulates protein expression level, most probably depending on the translation efficiency. BnaC4.BOR1;1c mainly localizes on the plasma membrane of vascular bundle cells in roots and shoots with a polar localization manner that is probably beneficial to B xylem loading in roots and B unloading from xylem to phloem in vascular bundle of shoots. Short-term 10B uptake analysis demonstrates that BnaC4.BOR1;1c preferentially distributes B to developing leaves and flowers under B deficiency.

Conclusion

This study reveals combined regulatory action of mRNA abundance and translation efficiency mediated by the 5’-UTR in BnaC4.BOR1;1c in response to B availability and its physiological role in preferential B acquisition in developing tissues of B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aibara I, Hirai T, Kasai K, Takano J, Onouchi H, Naito S, Fujiwara T, Miwa K (2018) Boron-dependent translational suppression of the borate exporter BOR1 contributes to the avoidance of boron toxicity. Plant Physiol 177:759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athman A, Tanz SK, Conn VM, Jordans C, Mayo GM, Ng WW, Burton RA, Conn SJ, Gilliham M (2014) Protocol: a fast and simple in situ PCR method for localising gene expression in plant tissue. Plant Methods 10:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, San Diego, pp 191–248

    Chapter  Google Scholar 

  • Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101

    Article  CAS  Google Scholar 

  • Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A (2014) The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 26:1–17

    Article  CAS  Google Scholar 

  • Chen H, Zhang Q, He M, Wang S, Shi L, Xu F (2018) Molecular characterization of the genome-wide BOR transporter gene family and genetic analysis of BnaC04.BOR1;1c in Brassica napus. BMC Plant Biol 18:1–14

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Diehn TA, Bienert MD, Pommerrenig B, Liu Z, Spitzer C, Bernhardt N, Fuge J, Bieber A, Richet N, Chaumont F, Bienert GP (2019) Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like intrinsic proteins and BOR1 transporters. Plant J 100:68–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A, Malcomber ST, Gassmann W, McSteen P (2014) Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:2978–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funakawa H, Miwa K (2015) Synthesis of borate cross-linked rhamnogalacturonan II. Front Plant Sci 6:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanaoka H, Uraguchi S, Takan J, Tanaka M, Fujiwara T (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902

    Article  CAS  PubMed  Google Scholar 

  • Hua Y, Zhang D, Zhou T, He M, Ding G, Shi L, Xu F (2016) Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ 39:1601–1618

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Bell RW, Dell B (2001) Boron supply into wheat (Triticum aestivum L. cv. Wilgoyne) ears whilst still enclosed within leaf sheaths. J Exp Bot 52:1731–1738

    CAS  PubMed  Google Scholar 

  • Kasai K, Takano J, Miwa K, Toyoda A, Fujiwara T (2011) High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana. J Biol Chem 286:6175–6183

    Article  CAS  PubMed  Google Scholar 

  • Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T (2013) Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Plant Cell Physiol 54:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Leonard A, Holloway B, Guo M, Rupe M, Yu G, Beatty M, Zastrow-Hayes G, Meeley R, Llaca V, Butler K, Stefani T, Jaqueth J, Li B (2014) tassel-less1 encodes a boron channel protein required for inflorescence development in maize. Plant Cell Physiol 55:1044–1054

    Article  CAS  PubMed  Google Scholar 

  • Li T, Choi W-G, Wallace IS, Baudry J, Roberts DM (2011) Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry 50:6633–6641

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G (2019) Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. PLoS One 14:1–23

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Marentes E, Shelp BJ, Vanderpool RA, Spiers GA (1997) Retranslocation of boron in broccoli and lupin during early reproductive growth. Physiol Plant 100:389–399

    Article  CAS  Google Scholar 

  • Matoh T, Ochiai K (2005) Distribution and partitioning of newly taken-up boron in sunflower. Plant Soil 278:351–360

    Article  CAS  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678

    Article  CAS  PubMed  Google Scholar 

  • Routray P, Li T, Yamasaki A, Yoshinari A, Takano J, Choi WG, Sams CE, Roberts DM (2018) Nodulin intrinsic protein 7;1 is a tapetal boric acid channel involved in pollen cell wall formation. Plant Physiol 178:1269–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Yamaji N, Liu XW, Yokosho K, Shen RF, Ma JF (2018) Preferential distribution of boron to developing tissues is mediated by the intrinsic protein OsNIP3;1. Plant Physiol 176:1739–1750

    Article  CAS  PubMed  Google Scholar 

  • Shao JF, Yamaji N, Huang S, Ma JF (2021) Fine regulation system for distribution of boron to different tissues in rice. New Phytol 230:656–668

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Shi L, Zhang C, Xu F (2012) Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep 39:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Yamagami M, Noguchi K, Hayashi H, Fujiwara T (2001) Preferential translocation of boron to young leaves in Arabidopsis thaliana regulated by the BOR1 gene. Soil Sci Plant Nutr 47:345–357

    Article  CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci U S A 102:12276–12281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Sotta N, Yamazumi Y, Yamashita Y, Miwa K, Murota K, Chiba Y, Hirai MY, Akiyama T, Onouchi H et al (2016) The minimum open reading frame, AUG-stop, induces boron-dependent ribosome stalling and mRNA degradation. Plant Cell 28:2930–2849

    Article  CAS  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 37:629–672

    Article  Google Scholar 

  • Xu F, Wang Y, Meng J (2001) Mapping boron efficiency gene (s) in Brassica napus using RFLP and AFLP markers. Plant Breed 10:31–324

    Google Scholar 

  • Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19:556–563

    Article  CAS  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2017) Node-controlled allocation of mineral elements in Poaceae. Curr Opin Plant Biol 39:18–24

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari A, Fujimoto M, Ueda T, Inada N, Naito S, Takano J (2016) DRP1-dependent endocytosis is essential for polar localization and boron-induced degradation of the borate transporter BOR1 in arabidopsis thaliana. Plant Cell Physiol 57:1985–2000

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chen H, He M, Zhao Z, Cai H, Ding G, Shi L, Xu F (2017) The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Plant Cell Environ 40:1819–1833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China (Grant no. 2016YFD0100700), National Natural Science Foundation of China (Grant no. 31772380), the Fundamental Research Funds for the Central Universities of China (Grant No. 2662019PY058, 2662019PY013), and Natural Science Foundation of Hubei Province (2019CFB467). We thank Dr. Limei Zhang and Xiangsheng Ye (Huazhong Agricultural University, China) for the technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

F.X. and S.W designed the research; S.W, L.L, D.Z, Y.H and Z.Z performed the experiments and analyzed the data; S.W. wrote the manuscript; all authors read and approved it.

Corresponding author

Correspondence to Fangsen Xu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Responsible Editor: Jian Feng Ma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1543 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, L., Zou, D. et al. Vascular tissue-specific expression of BnaC4.BOR1;1c, an efflux boron transporter gene, is regulated in response to boron availability for efficient boron acquisition in Brassica napus. Plant Soil 465, 171–184 (2021). https://doi.org/10.1007/s11104-021-04985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04985-y

Keywords

Navigation