Skip to main content
Log in

The Casimir Effect in a Dilute Bose Gas in Canonical Ensemble within Improved Hartree–Fock Approximation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Casimir effect in a dilute Bose gas confined between two parallel plates is investigated at zero temperature by means of Cornwall–Jackiw–Tomboulis effective action approach within the improved Hartree–Fock approximation in the canonical ensemble, in which the particle number is fixed. In comparison with those in the grand canonical ensemble, where the particle number can be changed, the fixation of the particle number leads to the significant changes in the Casimir energy and the resulting Casimir force. The most interesting result is that the Casimir energy and Casimir force decay in accordance with a half-integer power law instead of an integer power law in the grand canonical ensemble. Moreover, the scattering length dependence of the Casimir force is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    Google Scholar 

  2. T.H. Phat, N.V. Thu, Int. J. Mod. Phys. A 29, 1450078 (2014)

    Article  ADS  Google Scholar 

  3. J.F. Babb, Adv. At. Mol. Opt. Phys. 59, 1 (2010)

    Article  ADS  Google Scholar 

  4. G. Bimonte, Phys. Rev. A 78, 062101 (2008)

    Article  ADS  Google Scholar 

  5. F. Chen, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Phys. Rev. B 76, 035338 (2007)

    Article  ADS  Google Scholar 

  6. M. Fukuto, Y.F. Yano, P.S. Pershan, Phys. Rev. Lett. 94, 135702 (2005)

    Article  ADS  Google Scholar 

  7. A. Ganshin, S. Scheidemantel, R. Garcia, M.H.W. Chan, Phys. Rev. Lett. 97, 075301 (2006)

    Article  ADS  Google Scholar 

  8. D.M. Harber, J.M. Obrecht, J.M. McGuirk, E.A. Cornell, Phys. Rev. A 72, 033610 (2005)

    Article  ADS  Google Scholar 

  9. J.M. Obrecht, R.J. Wild, M. Antezza, L.P. Pitaevskii, S. Stringari, E.A. Cornell, Phys. Rev. Lett. 98, 063201 (2007)

    Article  ADS  Google Scholar 

  10. G.L. Klimchitskaya, V.M. Mostepanenko, J. Phys. A 41, 312002 (2008)

    Article  ADS  Google Scholar 

  11. S. Biswas, Eur. Phys. J. D 42, 109 (2007)

    Article  ADS  Google Scholar 

  12. S. Biswas, J.K. Bhattacharjee, D. Majumder, K. Saha, N. Chakravarty, J. Phys. B 43, 085305 (2010)

    Article  ADS  Google Scholar 

  13. J. Schiefele, C. Henkel, J. Phys. A 42, 045401 (2009)

    Article  MathSciNet  Google Scholar 

  14. N. Van Thu, P.T. Song, Physica A 540, 123018 (2020)

    Article  MathSciNet  Google Scholar 

  15. N. Van Thu, Phys. Lett. A 382, 1078 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  16. P.A. Martin, V.A. Zagrebnov, Europhys. Lett. 73, 15 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. M.M. Faruk, S. Biswas, J. Stat. Mech. 043401 (2018)

  18. E. Aydiner, Annalen der Physik 2000178 (2020)

  19. N. Van Thu, L.T. Theu, J. Stat. Phys 168, 1 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  20. D.C. Roberts, Y. Pomeau, Phys. Rev. Lett. 95, 145303 (2005)

    Article  ADS  Google Scholar 

  21. Nguyen Van Thu and Luong Thi Theu, Int. J. Mod. Phys. B 33, 1950114 (2019)

    Article  Google Scholar 

  22. J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)

    Article  ADS  Google Scholar 

  23. M.E. Fisher, P.G. de Gennes, C.R. Acad, Sci. Paris B 287, 207 (1978)

    Google Scholar 

  24. M. Gross, O. Vasilyev, A. Gambassi, S. Dietrich, Phys. Rev. E 94, 022103 (2016)

    Article  ADS  Google Scholar 

  25. C.M. Rohwer, A. Squarcini, O. Vasilyev, S. Dietrich, M. Gross, Phys. Rev. E 99, 062103 (2019)

    Article  ADS  Google Scholar 

  26. C.J. Pethick, H. Smith, Bose–Einstein condensation in dilute gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  27. L. Pitaevskii, S. Stringari, Bose–Einstein condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  28. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  Google Scholar 

  29. T.H. Phat, L.V. Hoa, N.T. Anh, N.V. Long, Ann. Phys. 324, 2074 (2009)

    Article  ADS  Google Scholar 

  30. Y.B. Ivanov, F. Riek, J. Knoll, Phys. Rev. D 71, 105016 (2005)

    Article  ADS  Google Scholar 

  31. S. Floerchinger, C. Wetterich, Phys. Rev. A 79, 013601 (2009)

    Article  ADS  Google Scholar 

  32. A. Schmitt, Dense matter in compact stars (Springer, Berlin, 2010)

    Book  Google Scholar 

  33. P.D. Drummond, A. Eleftheriou, K. Huang, K.V. Kheruntsyan, Phys. Rev. A 63, 053602 (2001)

    Article  ADS  Google Scholar 

  34. J. Brand, W.P. Reinhardt, J. Phys. B 34, L113 (2001)

    Article  ADS  Google Scholar 

  35. A.A. Shams, H.R. Glyde, Phys. Rev. B 79, 214508 (2009)

    Article  ADS  Google Scholar 

  36. G.B. Arfken, H.J. Weber, Mathematical methods for physicists, 6th edn. (Academic, San Diego, 2005)

    MATH  Google Scholar 

  37. M. Egorov, B. Opanchuk, P. Drummond, B.V. Hall, P. Hannaford, A.I. Sidorov, Phys. Rev. A 87, 053614 (2013)

    Article  ADS  Google Scholar 

  38. S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature (London) 392, 151 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2018.02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Thu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thu, N. The Casimir Effect in a Dilute Bose Gas in Canonical Ensemble within Improved Hartree–Fock Approximation. J Low Temp Phys 204, 12–23 (2021). https://doi.org/10.1007/s10909-021-02597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02597-5

Keywords

Navigation