Skip to main content
Log in

Indirect 3D printed ceramic: A literature review

间接3D 陶瓷打印技术:文献综述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM), also known as 3D-printing (3DP) technology, is an advanced manufacturing technology that has developed rapidly in the past 40 years. However, the ceramic material printing is still challenging because of the issue of cracking. Indirect 3D printing has been designed and drawn attention because of its high manufacturing speed and low cost. Indirect 3D printing separates the one-step forming process of direct 3D printing into binding and material sintering, avoiding the internal stress caused by rapid cooling, making it possible to realize the high-quality ceramic component with complex shape. This paper presents the research progress of leading indirect 3D printing technologies, including binder jetting (BJ), stereolithography (SLA), and fused deposition modeling (FDM). At present, the additive manufacturing of ceramic materials is mainly achieved through indirect 3D printing technology, and these materials include silicon nitride, hydroxyapatite functional ceramics, silicon carbide structural ceramics.

摘要

增材制造(AM),也称为3D 打印(3DP)技术,是一种在过去40 年中发展迅速的先进制造技术。然而,由于开裂的问题,陶瓷材料的打印仍然具有挑战性。间接3D 打印由于其快制造速度和低成本而受到关注。间接3D 打印将直接3D 打印的一步成型过程分为粘结和材料烧结,避免了由于快速冷却而导致的内应力,从而可以实现形状复杂的高质量陶瓷组件的制备。本文介绍了先进的间接3D 打印技术的研究进展,包括黏结剂喷射(BJ),立体光刻(SLA)和熔融沉积建模(FDM)。目前,陶瓷材料的增材制造主要是通过间接3D 打印技术实现的,这些材料包括氮化硅,羟基磷灰石功能陶瓷,碳化硅结构陶瓷。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. LEE J H, KIM J H, HWANG K T, HWANG H J, HAN K S. Digital inkjet printing in three dimensions with multiple ceramic compositions [J]. Journal of the European Ceramic Society, 2020, 41(2): 1490–1497. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.09.044.

    Article  Google Scholar 

  2. ARAMIAN A, RAZAVI S M J, SADEGHIAN Z, BERTO F. A review of additive manufacturing of cermets [J]. Additive Manufacturing, 2020, 33: 101130. DOI: https://doi.org/10.1016/j.addma.2020.101130.

    Article  Google Scholar 

  3. CHEN Zhang-weu, LI Zi-yong, LI Jun-jie, LIU Cheng-bo, LAO Chang-shi, FU Yue-long, LIU Chang-yong, LI Yang, WANG Pei, HE Yi. 3D printing of ceramics: A review [J]. Journal of the European Ceramic Society, 2019, 39(4): 661–687. DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.11.013.

    Article  Google Scholar 

  4. SACHS E M, HAGGERTY J S, CIMA M J, WILLIAMS P A. Three-dimensional printing techniques: US, 5204055A [P]. 1993-04-20.

  5. HWA L C, RAJOO S, NOOR A M, AHMAD N, UDAY M B. Recent advances in 3D printing of porous ceramics: A review [J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323–347. DOI: https://doi.org/10.1016/j.cossms.2017.08.002.

    Article  Google Scholar 

  6. ZIAEE M, CRANE N B. Binder jetting: A review of process, materials, and methods [J]. Additive Manufacturing, 2019, 28: 781–801. DOI: https://doi.org/10.1016/j.addma.2019.05.031.

    Article  Google Scholar 

  7. DU W, SINGH M, SINGH D. Binder jetting additive manufacturing of silicon carbide ceramics: Development of bimodal powder feedstocks by modeling and experimental methods [J]. Ceramics International, 2020, 46(12): 19701–19707. DOI: https://doi.org/10.1016/j.ceramint.2020.04.098.

    Article  Google Scholar 

  8. LEARY M. Design for additive manufacturing [M]. Berlin: Springer, 2020. DOI: https://doi.org/10.1016/b978-0-12-816721-2.00013-0.

    Google Scholar 

  9. RABINSKIY L, RIPETSKY A, SITNIKOV S, SOLYAEV Y, KAHRAMANOV R. Fabrication of porous silicon nitride ceramics using binder jetting technology [J]. IOP Conference Series: Materials Science and Engineering, 2016, 140: 012023. DOI: https://doi.org/10.1088/1757-899x/140/1/012023.

    Article  Google Scholar 

  10. RABINSKIY L N, SITNIKOV S A, POGODIN V A, RIPETSKIY A A, SOLYAEV Y O. Binder jetting of Si3N4 ceramics with different porosity [J]. Solid State Phenomena, 2017, 269: 37–50 DOI: https://doi.org/10.4028/www.scientific.net/SSP.269.37.

    Article  Google Scholar 

  11. DíAZ-MORENO C A, LIN Y, HURTADO-MACíAS A, ESPALIN D, TERRAZAS C A, MURR L E, WICKER R B. Binder jetting additive manufacturing of aluminum nitride components [J]. Ceramics International, 2019, 45(11): 13620–13627. DOI: https://doi.org/10.1016/j.ceramint.2019.03.187.

    Article  Google Scholar 

  12. CHEN Hong, ZHANG Ji-fa, CUI Jing-biao, FANG Rong-chuan. Deposition of diamond film on aluminum nitride ceramics and the study of their thermal conductance [J]. Chinese Physics Letters, 1996, 13(8): 625. DOI: https://doi.org/10.1088/0256-307X/13/8/018/.

    Article  Google Scholar 

  13. BUSCAGLIA V, RANDALL C A. Size and scaling effects in barium titanate. An overview [J]. Journal of the European Ceramic Society, 2020, 40(11): 3744–3758. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.01.021.

    Article  Google Scholar 

  14. GAYTAN S M, CADENA M A, KARIM H, DELFIN D, LIN Y, ESPALIN D, MACDONALD E, WICKER R B. Fabrication of barium titanate by binder jetting additive manufacturing technology [J]. Ceramics International, 2015, 41(5): 6610–6619. DOI: https://doi.org/10.1016/j.ceramint.2015.01.108.

    Article  Google Scholar 

  15. BUSCAGLIA V, VIVIANI M, BUSCAGLIA M T, NANNI P, MITOSERIU L, TESTINO A, STYTSENKO E, DAGLISH M, ZHAO Z, NYGREN M. Nanostructured barium titanate ceramics [J]. Powder Technology, 2004, 148(1): 24–27. DOI: https://doi.org/10.1016/j.powtec.2004.09.016.

    Article  Google Scholar 

  16. GAYTAN S M, CADENA M, ALDAZ M, HERDERICK E, MEDINA F, WICKER R, KECK W. Characterization of ceramic components fabricated using binder jetting additive manufacturing technology [J]. Ceramics International, 2016, 42(9): 10559–10564. DOI: https://doi.org/10.1016/j.ceramint.2016.03.079.

    Article  Google Scholar 

  17. CHEN Ren-zheng, CUI Ai-li, WANG Xiao-hui, LI Long-tu. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property [J]. Materials Science and Engineering B, 2003, 99(1–3): 302–305. DOI: https://doi.org/10.1016/S0921-5107(02)00557-3.

    Article  Google Scholar 

  18. SOLIS D M, SILVA A V, VOLPATO N, BERTI L F. Reaction-bonding of aluminum oxide processed by binder jetting [J]. Journal of Manufacturing Processes, 2019, 41: 267–272. DOI: https://doi.org/10.1016/j.jmapro.2019.04.008.

    Article  Google Scholar 

  19. SUWANPRATEEB J, SANNGAM R, SUVANNAPRUK W, PANYATHANMAPORN T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing [J]. J Mater Sci Mater Med, 2009, 20(6): 1281–1289. DOI: https://doi.org/10.1007/s10856-009-3697-1.

    Article  Google Scholar 

  20. BANDYOPADHYAY A, BERNARD S, XUE W, BOSE S. Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 dopants [J]. Journal of the American Ceramic Society, 2006, 89(9): 2675–2688. DOI: https://doi.org/10.1111/j.1551-2916.2006.01207.x.

    Article  Google Scholar 

  21. KE D, BOSE S. Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing [J]. Additive Manufacturing, 2018, 22: 111–117. DOI: https://doi.org/10.1016/j.addma.2018.04.020.

    Article  Google Scholar 

  22. MARINUCCI L, BALLONI S, BECCHETTI E, BELCASTRO S, GUERRA M, CALVITTI M, LULL C, CALVI E M, LOCCI P. Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro [J]. International Journal of Oral & Maxillofacial Implants, 2006, 21(5): 719–725.

    Google Scholar 

  23. SUWANPRATEEB J, SANNGAM R, PANYATHANMAPORN T. Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique [J]. Materials Science and Engineering C, 2010, 30(4): 610–617. DOI: https://doi.org/10.1016/j.msec.2010.02.014.

    Article  Google Scholar 

  24. UTELA B, STORTI D, ANDERSON R, GANTER M. A review of process development steps for new material systems in three dimensional printing (3DP) [J]. Journal of Manufacturing Processes, 2008, 10(2): 96–104. DOI: https://doi.org/10.1016/j.jmapro.2009.03.002.

    Article  Google Scholar 

  25. ZHOU Z, BUCHANAN F, MITCHELL C, DUNNE N J M S, C E. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique [J]. Materials Science and Engineering C, 2014, 38: 1–10. DOI: https://doi.org/10.1016/j.msec.2014.01.027.

    Article  Google Scholar 

  26. LV Xin-yuan, YE Fang, CHENG Lai-fei, FAN Shang-wu, LIU Yong-sheng. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment [J]. Ceramics International, 2019, 45(10): 12609–12624. DOI: https://doi.org/10.1016/j.ceramint.2019.04.012.

    Article  Google Scholar 

  27. POLOZOV I, RAZUMOV N, MASAYLO D, SILIN A, LEBEDEVA Y, POPOVICH A. Fabrication of silicon carbide fiber-reinforced silicon carbide matrix composites using binder jetting additive manufacturing from irregularly-shaped and spherical powders [J]. Materials, 2020, 13(7): 1766. DOI: https://doi.org/10.3390/ma13071766.

    Article  Google Scholar 

  28. OVERMEYER L, NEUMEISTER A, KLING R. Direct precision manufacturing of three-dimensional components using organically modified ceramics [J]. CIRP Annals, 2011, 60(1): 267–270. DOI: https://doi.org/10.1016/j.cirp.2011.03.067.

    Article  Google Scholar 

  29. ZAKERI S, VIPPOLA M, LEVÄNEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography [J]. Additive Manufacturing, 2020, 35: 101177. DOI: https://doi.org/10.1016/j.addma.2020.101177.

    Article  Google Scholar 

  30. HE R, DING G, ZHANG K, LI Y, FANG D. Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis [J]. Ceramics International, 2019, 45(11): 14006–14014. DOI: https://doi.org/10.1016/j.ceramint.2019.04.100.

    Article  Google Scholar 

  31. CHEN Jiang-shan, WANG Yuan-jie, PEI Xue-liang, BAO Chong-hao, HUANG Zheng-ren, HE Liu, HUANG Qing. Preparation and stereolithography of SiC ceramic precursor with high photosensitivity and ceramic yield [J]. Ceramics International, 2020, 46(9): 13066–13072. DOI: https://doi.org/10.1016/j.ceramint.2020.02.077.

    Article  Google Scholar 

  32. LV Xin-yuan, YE Fang, CHENG Lai-fei, FAN Shang-wu, LIU Yong-sheng. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology [J]. Journal of the European Ceramic Society, 2019, 39(11): 3380–3386. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.04.043.

    Article  Google Scholar 

  33. DING Guo-jiao, HE Ru-jie, ZHANG Ke-qing, ZHOU Ni-ping, XU Hao. Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror [J]. Ceramics International, 2020, 46(11): 18785–18790. DOI: https://doi.org/10.1016/j.ceramint.2020.04.196.

    Article  Google Scholar 

  34. LIU Yao, CHENG Li-jin, LI Hao, LI Qing, SHI Yuan, LIU Fei, WU Qiu-mei, LIU Shao-jun. Formation mechanism of stereolithography of Si3N4 slurry using silane coupling agent as modifier and dispersant [J]. Ceramics International, 2020, 46(10): 14583–14590. DOI: https://doi.org/10.1016/j.ceramint.2020.02.258.

    Article  Google Scholar 

  35. ZHANG Ke-qiang, HE Ru-jie, XIE Chen, WANG Gang, DING Guo-qiao, WANG Min, SONG Wei-dong, FANG Daining. Photosensitive ZrO2 suspensions for stereolithography [J]. Ceramics International, 2019, 45(9): 12189–12195. DOI: https://doi.org/10.1016/j.ceramint.2019.03.123.

    Article  Google Scholar 

  36. FU Xiang-song, ZOU Bin, XING Hong-yu, LI Lei, LI Yi-shang, WANG Xin-feng. Effect of printing strategies on forming accuracy and mechanical properties of ZrO2 parts fabricated by SLA technology [J]. Ceramics International, 2019, 45(14): 17630–17637. DOI: https://doi.org/10.1016/j.ceramint.2019.05.328.

    Article  Google Scholar 

  37. LI Yan-hui, CHEN Yong, WANG Ming-lang, LI Lian, WU Hai-dong, HE Fu-po, WU Shang-hua. The cure performance of modified ZrO2 coated by paraffin via projection based stereolithography [J]. Ceramics International, 2019, 45(3): 4084–4088. DOI: https://doi.org/10.1016/j.ceramint.2018.10.003.

    Article  Google Scholar 

  38. SUN J, BINNER J, BAI J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography [J]. Journal of the European Ceramic Society, 2019, 39(4): 1660–1667. DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.10.024.

    Article  Google Scholar 

  39. FAES M, VLEUGELS J, VOGELER F, FERRARIS E. Extrusion-based additive manufacturing of ZrO2 using photoinitiated polymerization [J]. CIRP Journal of Manufacturing Science and Technology, 2016, 14: 28–34. DOI: https://doi.org/10.1016/j.cirpj.2016.05.002.

    Article  Google Scholar 

  40. SUN J, BINNER J, BAI J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography [J]. Journal of the European Ceramic Society, 2019, 39(4): 1660–1667. DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.10.024.

    Article  Google Scholar 

  41. HE Rong-xuan, LIU Wei, WU Zi-wei, AN Di, HUANG Mei-peng, WU Hai-dong, JIANG Qiang-guo, JI Xuan-rong, WU Shang-hua, XIE Zhi-peng. Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method [J]. Ceramics International, 2018, 44(3): 3412–3416. DOI: https://doi.org/10.1016/j.ceramint.2017.11.135.

    Article  Google Scholar 

  42. LIAN Qin, SUI Wen-quan, WU Xiang-quan, YANG Fei, YANG Shao-peng. Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography [J]. Rapid Prototyping Journal, 2018, 24(1): 114–119. DOI: https://doi.org/10.1108/RPJ-09-2016-0144.

    Article  Google Scholar 

  43. JIANG C P, HSU H J, LEE S Y. Development of mask-less projection slurry stereolithography for the fabrication of zirconia dental coping [J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(11): 2413–2419. DOI: https://doi.org/10.1007/s12541-014-0608-2.

    Article  Google Scholar 

  44. LIU Xiao-yan, ZOU Bin, XING Hong-yu, HUANG Chuan-zhen. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing [J]. Ceramics International, 2020, 46(1): 937–944. DOI: https://doi.org/10.1016/j.ceramint.2019.09.054.

    Article  Google Scholar 

  45. WU Zi-wei, LIU Wei, WU Hai-dong, HUANG Rong-ji, HE Rong-xuan, JIANG Qiang-guo, CHEN Yan, JI Xuan-rong, TIAN Zhuo, WU Shang-hua. Research into the mechanical properties, sintering mechanism and microstructure evolution of Al2O3-ZrO2 composites fabricated by a stereolithography-based 3D printing method [J]. Materials Chemistry and Physics, 2018, 207: 1–10. DOI: https://doi.org/10.1016/j.matchemphys.2017.12.021.

    Article  Google Scholar 

  46. ZHOU Tian-yuan, ZHANG Le, YAO Qing, MA Yue-long, HOU Chen, SUN Bing-heng, SHAO Cen, GAO Pan, CHEN Hao. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications [J]. Ceramics International, 2020, 46(6): 7609–7614. DOI: https://doi.org/10.1016/j.ceramint.2019.11.261.

    Article  Google Scholar 

  47. CHEN Fen, ZHU Hao, WU Jia-min, CHEN Shuang, CHENG Li-jin, SHI Yu-sheng, MO Yuan-chang, LU Chen-hui, XIAO Jun. Preparation and biological evaluation of ZrO2 all-ceramic teeth by DLP technology [J]. Ceramics International, 2020, 46(8): 11268–11274. DOI: https://doi.org/10.1016/j.ceramint.2020.01.152.

    Article  Google Scholar 

  48. BORLAF M, SERRA-CAPDEVILA A, COLOMINAS C, GRAULE T. Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology [J]. Journal of the European Ceramic Society, 2019, 39(13): 3797–3803. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.05.023.

    Article  Google Scholar 

  49. XING Bo-hang, CAO Chuan-ru, ZHAO Wei-ming, SHEN Min-hao, WANG Cao, ZHAO Zhe. Dense 8 mol% yttriastabilized zirconia electrolyte by DLP stereolithography [J]. Journal of the European Ceramic Society, 2020, 40(4): 1418–1423. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.09.045.

    Article  Google Scholar 

  50. VARGHESE G, MORAL M, CASTRO-GARCÍA M, LÓPEZ-LÓPEZ J J, MARíN-RUEDA J R, YAGÜEALCARAZ V, HERNÁNDEZ-AFONSO L, RUIZ-MORALES J C, CANALES-VáZQUEZ J. Fabrication and characterisation of ceramics via low-cost DLP 3D printing [J]. Boletín de la Sociedad Española de Cerámica y Vidrio, 2018, 57(1): 9–18. DOI: https://doi.org/10.1016/j.bsecv.2017.09.004.

    Article  Google Scholar 

  51. ZHANG Fan, LI Liang-feng, WANG En-ze. Effect of micro-alumina content on mechanical properties of Al2O3/3Y-TZP composites [J]. Ceramics International, 2015, 41(9): 12417–12425. DOI: https://doi.org/10.1016/j.ceramint.2015.06.081.

    Article  Google Scholar 

  52. WANG Shu-heng, MA Yong-bin, DENG Zi-chen, ZHANG Sen, CAI Jia-xin. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials [J]. Polymer Testing, 2020, 86. DOI: https://doi.org/10.1016/j.polymertesting.2020.106483.

  53. MELOCCHI A, UBOLDI M, MARONI A, FOPPOLI A, PALUGAN L, ZEMA L, GAZZANIGA A. 3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery—A review [J]. International Journal of Pharmaceutics, 2020, 579: 119155. DOI: https://doi.org/10.1016/j.ijpharm.2020.11915.

    Article  Google Scholar 

  54. AGARWALA M, WEEREN R V, BANDYOPADHYAY A, WHALEN P, SAFARI A, DANFORTH S. Fused deposition of ceramics and metals: An overview [C]//International Solid Freeform Fabrication Symposium. Austin, TX, USA, 1996: 385–392.

  55. RANGARAJAN S, QI G, VENKATARAMAN N, SAFARI A, DANFORTH S. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics [J] Journal of the American Ceramic Society. 2000, 83(7): 1663–1669. DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01446.x.

    Article  Google Scholar 

  56. IYER S, MCINTOSH J, BANDYOPADHYAY A, LANGRANA N, SAFARI A, DANFORTH S C, CLANCY R B, GASDASKA C, WHALEN P J. Microstructural characterization and mechanical properties of Si3N4 Formed by fused deposition of ceramics [J]. International Journal of Applied Ceramic Technology, 2008, 5(2): 127–137. DOI: https://doi.org/10.1111/j.1744-7402.2008.02193.x.

    Article  Google Scholar 

  57. WU Jin-tian, CHEN Ning, BAI Feng, WANG Qi. Preparation of poly(vinyl alcohol)/poly(lactic acid)/hydroxyapatite bioactive nanocomposites for fused deposition modeling [J]. Polymer Composites, 2018, 39(S1): E508–E518. DOI: https://doi.org/10.1002/pc.24642.

    Article  Google Scholar 

  58. ARNESANO A, KUNJALUKKAL PADMANABHAN S, NOTARANGELO A, MONTAGNA F, LICCIULLI A. Fused deposition modeling shaping of glass infiltrated alumina for dental restoration [J]. Ceramics International, 2020, 46(2): 2206–2212. DOI: https://doi.org/10.1016/j.ceramint.2019.09.205.

    Article  Google Scholar 

  59. ESPOSITO CORCIONE C, GERVASO F, SCALERA F, PADMANABHAN S K, MADAGHIELE M, MONTAGNA F, SANNINO A, LICCIULLI A, MAFFEZZOLI A. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling [J]. Ceramics International, 2019, 45(2): 2803–2810. DOI: https://doi.org/10.1016/j.ceramint.2018.07.297.

    Article  Google Scholar 

  60. DUBINENKO G E, ZINOVIEV A L, BOLBASOV E N, NOVIKOV V T, TVERDOKHLEBOV S I. Preparation of poly(L-lactic acid)/hydroxyapatite composite scaffolds by fused deposit modeling 3D printing [J]. Materials Today: Proceedings, 2020, 22: 228–234. DOI: https://doi.org/10.1016/j.matpr.2019.08.092.

    Google Scholar 

  61. ONAGORUWA S, BOSE S, BANDYOPADHYAY A. Fused deposition of ceramics (FDC) and composites [C]// International Solid Freeform Fabrication Symposium. Texas, USA, 2001. DOI: https://doi.org/10.26153/tsw/3267.

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Bai-cheng and QU Xuan-hui provided the concept and edited the draft of manuscript. CAI Jia-wei conducted the literature review and wrote the first draft of the manuscript. ZHANG Mao-hang and WEN Yao-jie edited the draft of manuscript.

Corresponding author

Correspondence to Bai-cheng Zhang  (张百成).

Additional information

Conflict of interest

QU Xuan-hui, ZHANG Bai-cheng, CAI Jia-wei, ZHANG Mao-hang and WEN Yao-jie declare that they have no conflict of interest.

Foundation item: Project(51901020) supported by the National Natural Science Foundation of China; Project(2019JZZY010327) supported by Shandong Key Research and Development Plan, China; Project(201942074001) supported by Aeronautical Science Foundation of China; Project(FRF-IP-20-05) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Jw., Zhang, Bc., Zhang, Mh. et al. Indirect 3D printed ceramic: A literature review. J. Cent. South Univ. 28, 983–1002 (2021). https://doi.org/10.1007/s11771-021-4674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4674-1

Keywords

关键词

Navigation