Skip to main content
Log in

Royal Jelly Proteins Inhibit Macrophage Proliferation: Interactions with Native- and Oxidized-Low Density Lipoprotein

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Macrophage proliferation is known to correlate with macrophage accumulation in atherosclerotic plaque, and therefore its inhibition and secondary reduction of plaque inflammation may have therapeutic beneficial effects on atherosclerosis. Recently, we reported that a peptide corresponding to positions 41–51 of royalisin (which consists of 51 amino acid residues), a potent antibacterial protein contained in royal jelly (RJ), can specifically bind to oxidized LDL (Ox-LDL), a major components of atherosclerotic lesions. Here, we investigated the interaction of RJ proteins including royalisin with LDL and Ox-LDL. Measurement of LDL oxidation by the production of thiobarbituric acid reactive substances and conjugated dienes, and by electrophoretic mobility on polyacrylamide gel electrophoresis showed that RJ proteins including royalisin and the degradation products of major RJ protein (MRJP) 1 and MRJP3 can induce oxidation of LDL and Ox-LDL. Surface plasmon resonance experiments showed that these RJ proteins can exhibit much higher binding affinity to LDL than Ox-LDL (the equilibrium dissociation constant, KD = 8.35 and 49.65 μg proteins/mL for LDL and Ox-LDL, respectively). Experiments using cultured mouse J774A.1 macrophage cells proved that these RJ proteins can inhibit macrophage proliferation markedly and concentration-dependently, regardless of the absence or presence of LDL and Ox-LDL, but hardly affect lipid accumulation in macrophages. These results suggest that RJ proteins including royalisin and degradation products of MRJP1/MRJP3 may have therapeutic beneficial effects on atherosclerosis owing to the reduction of plaque inflammation. Further studies of these RJ proteins may lead to the discovery of novel anti-atherosclerotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ross R (1999) Mechanism of disease: atherosclerosis—an inflammatory disease. N Engl Med 340:115–126. https://doi.org/10.1056/NEJM199901143400207

    Article  CAS  Google Scholar 

  2. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104:503–516. https://doi.org/10.1016/S0092-8674(01)00238-0

    Article  CAS  PubMed  Google Scholar 

  3. Sternberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924. https://doi.org/10.1056/NEJM198904063201407

    Article  Google Scholar 

  4. Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140. https://doi.org/10.1161/01.cir.83.6.2137

    Article  CAS  PubMed  Google Scholar 

  5. Witztum JL (1993) Role of oxidised low-density lipoprotein in atherogenesis. Br Heart J 69:S12–S18. https://doi.org/10.1136/hrt.69.1_suppl.s12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654. https://doi.org/10.1161/01.atv.0000033829.14012.18

    Article  CAS  PubMed  Google Scholar 

  7. Sigala F, Kotsinas A, Savari P, Fillis K, Markantonis S, Iliodromitis EK, Gorgoulis VG, Andreadou I (2010) Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J Vasc Surg 52:704–713. https://doi.org/10.1016/j.jvs.2010.03.047

    Article  PubMed  Google Scholar 

  8. Ramos-Arellano LE, Muñoz-Valle JF, De la Cruz-Mosso U, Salgado-Bernabé AB, Castro-Alarcón N, Isela Parra-Rojas I (2014) Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects. BMC Cardiovasc Disord 14:54. https://doi.org/10.1186/1471-2261-14-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang J, Lobatto ME, Hassing L, van der Staay S, van Rijs SM, Calcagno C, Braza MS, Baxter S, Fay F, Sanchez-Gaytan BL, Duivenvoorden R, Sager HB, Astudillo YM, Leong W, Ramachandran S, Storm G, Pérez-Medina C, Reiner T, Cormode DP, Strijkers GJ, Stroes ESG, Swirski FK, Nahrendorf M, Fisher EA, Fayad ZA, Mulder WJM (2015) Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Sci Adv 1:e1400223. https://doi.org/10.1126/sciadv.1400223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamada S, Senokuchi T, Matsumura T, Morita Y, Ishii N, Fukuda K, Murakami-Nishida S, Nishida S, Kawasaki S, Motoshima H, Furukawa N, Komohara Y, Fujiwara Y, Koga T, Yamagata K, Takeya M, Araki E (2018) Inhibition of local macrophage growth ameliorates focal inflammation and suppresses atherosclerosis. Arterioscler Thromb Vasc Biol 38:994–1006. https://doi.org/10.1161/ATVBAHA.117.310320

    Article  CAS  PubMed  Google Scholar 

  11. Nagai T, Inoue R (2004) Preparation and functional properties of water extract and alkaline extract of royal jelly. Food Chem 84:181–186. https://doi.org/10.1016/S0308-8146(03)00198-5

    Article  CAS  Google Scholar 

  12. Melliou E, Chinou I (2005) Chemistry and bioactivity of royal jelly from Greece. J Agri Food Chem 53:8987–8992. https://doi.org/10.1021/jf051550p

    Article  CAS  Google Scholar 

  13. Ramadan MF, AI-Ghamdi A (2012) Bioactive compounds and health-promoting properties of royal jelly: a review. J Funct Foods 4:39–52. https://doi.org/10.1016/j.jff.2011.12.007

    Article  CAS  Google Scholar 

  14. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi KA (1990) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem 265:11333–11337. https://doi.org/10.1016/S0021-9258(19)38596-5

    Article  CAS  PubMed  Google Scholar 

  15. Shen L, Liu D, Li M, Jin F, Din M, Parnell LD, Lai CQ (2012) Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria. PLoS ONE 7:e47194. https://doi.org/10.1371/journal.pone.0047194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bílikova K, Huang SC, Lin IP, Šimúth J, Peng CC (2015) Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of apis mellifera. Peptides 68:190–196. https://doi.org/10.1016/j.peptides.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  17. Sato A, Unuma H, Yamazaki Y, Ebina K (2018) A fluorescently labeled undecapeptide derived from a protein in royal jelly of the honeybee-royalisin-for specific detection of oxidized low-density lipoprotein. J Pept Sci 24:e3072. https://doi.org/10.1002/psc.3072

    Article  CAS  PubMed  Google Scholar 

  18. Sato A, Aoki J, Ebina K (2012) Synthetic biotinylated peptide compound, BP21, specifically recognizes lysophosphatidylcholine micelles. Chem Biol Drug Des 80:417–425. https://doi.org/10.1111/j.1747-0285.2012.01413.x

    Article  CAS  PubMed  Google Scholar 

  19. Sato A, Kumagai T, Aoki J, Ebina K (2012) Synthetic biotinylated peptide compounds derived from asp-hemolysin: novel potent inhibitors of platelet-activating factor. Eur J Pharmacol 685:205–212. https://doi.org/10.1016/j.ejphar.2012.04.025

    Article  CAS  PubMed  Google Scholar 

  20. Sato A, Yamazaki M, Watanabe H, Sakurai E, Ebina K (2020) Human estrogen sulfotransferase and its related fluorescently labeled decapeptides specifically interact with oxidized low-density lipoprotein. J Pept Sci 26:e3274. https://doi.org/10.1002/psc.3274

    Article  CAS  PubMed  Google Scholar 

  21. Bíliková K, Wu G, Šimúth J (2001) Isolation of a peptide fraction from honeebee royal jelly as a potential antifoulbrood factor. Apidologie 32:275–283. https://doi.org/10.1051/apido:2001129

    Article  Google Scholar 

  22. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. https://doi.org/10.1016/0003-2697(85)90442-7

    Article  CAS  Google Scholar 

  23. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353. https://doi.org/10.1172/JCI103182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  25. Corongiu FP, Banni S (1994) Detection of conjugated dienes by second derivative ultraviolet spectrophotometry. Methods Enzymol 233:303–310. https://doi.org/10.1016/S0076-6879(94)33033-6

    Article  CAS  PubMed  Google Scholar 

  26. Staprans I, Rapp JH, Pan X-M, Kim KY, Feingold KR (1994) Oxidized lipids in the diet are a source of oxidized lipids in chylomicrons of human serum. Arterioscler Thromb 14:1900–1905. https://doi.org/10.1161/01.ATV.14.12.1900

    Article  CAS  PubMed  Google Scholar 

  27. Sato A, Yamanaka H, Oe K, Yamazaki Y, Ebina K (2014) Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity. Chem Biol Drug Des 84:443–449. https://doi.org/10.1111/cbdd.12333

    Article  CAS  PubMed  Google Scholar 

  28. Sato A, Yamanaka H, Oe K, Yokoyama I, Yamazaki Y, Ebina K (2015) Highly stable, fluorescence-labeled heptapeptides substituted with a d-amino acid for the specific detection of oxidized low-density lipoprotein in plasma. Chem Biol Drug Des 85:348–355. https://doi.org/10.1111/cbdd.12399

    Article  CAS  PubMed  Google Scholar 

  29. Ahmad S, Campos MG, Fratini F, Altaye SZ, Li J (2020) New insights into biological and pharmaceutical properties of royal jelly. Int J Mol Sci 21:382. https://doi.org/10.3390/ijms21020382

    Article  CAS  PubMed Central  Google Scholar 

  30. Tamura S, Amano S, Kono T, Kondoh J, Yamaguchi K, Kobayashi S, Ayabe T, Moriyama T (2009) Molecular characteristics and physiological functions of major royal jelly protein 1 oligomer. Proteomics 9:5534–5543. https://doi.org/10.1002/pmic.200900541

    Article  CAS  PubMed  Google Scholar 

  31. Nozaki R, Tamura S, Ito A, Moriyama T, Yamaguchi K, Kono T (2012) A rapid method to isolate soluble royal jelly proteins. Food Chem 134:2332–2337. https://doi.org/10.1016/j.foodchem.2012.03.106

    Article  CAS  PubMed  Google Scholar 

  32. Mitra S, Goyal T, Mehta JL (2011) Oxidized LDL LOX-1 and atherosclerosis. Cardiovasc Drugs Ther 25:419–429. https://doi.org/10.1007/s10557-011-6341-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-profit sectors. The authors thank Ms. Hiromi Yoshida (Common Instrument Center, Institute of Development, Aging and Cancer, Tohoku University) for surface plasmon resonance measurement. We would like to thank Editage (Tokyo, Japan) for editing and reviewing this manuscript for English language.

Author information

Authors and Affiliations

Authors

Contributions

AS and KE conceived and designed the experiments. AS and HU carried out the experiments and analyzed the data. AS wrote the manuscript.

Corresponding author

Correspondence to Akira Sato.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Unuma, H. & Ebina, K. Royal Jelly Proteins Inhibit Macrophage Proliferation: Interactions with Native- and Oxidized-Low Density Lipoprotein. Protein J 40, 699–708 (2021). https://doi.org/10.1007/s10930-021-09998-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09998-1

Keywords

Navigation