Skip to main content
Log in

Multistage mantle metasomatism deciphered by Mg−Sr−Nd−Pb isotopes in the Leucite Hills lamproites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Cratonic lamproites bear extreme Sr−Nd−Pb isotopic compositions widely known as enriched mantle I (EMI), yet the origin of the EMI reservoir remains controversial. Here, we explore this issue by examining Mg−Sr−Nd−Pb isotopic compositions of lamproites from Leucite Hills, Wyoming, USA. The δ26Mg values vary from the range of the normal mantle to lower values (− 0.43 to − 0.18 ‰), correlating with indices of the degree of carbonate metasomatism, an observation that can be best explained through mantle metasomatism by subducted carbonate-bearing sediments. With increasing extent of carbonate metasomatism, these samples display less extreme EMI Sr−Nd−Pb isotopic signatures, arguing for at least two metasomatic events that occurred in their mantle sources. The early metasomatic event associated with subducted continent-derived siliciclastic sediments led to the formation of the EMI Sr−Nd−Pb isotopic signatures while the recent carbonate metasomatism produced the light Mg isotopic signature but diluted the EMI Sr−Nd−Pb isotopic signatures. Our study indicates that a combination of Mg and Sr−Nd−Pb isotopes could be an effective tool in deciphering multiple-stage metasomatic events in mantle sources and places new constraints on the generation of enriched mantle reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bizimis M, Salters VJM, Dawson JB (2003) The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contrib Miner Petrol 145:281–300

    Google Scholar 

  • Carlson RW, Irving AJ (1994) Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming craton. Earth Planet Sci Lett 126:457–472

    Google Scholar 

  • Chamberlain KR, Frost CD, Frost BR (2003) Early Archean to Mesoproterozoic evolution of the Wyoming province: Archean origins to modern lithospheric architecture. Can J Earth Sci 40:1357–1374

    Google Scholar 

  • Cheng Z, Zhang Z, Hou T, Santosh M, Chen L, Ke S, Xu L (2017) Decoupling of Mg–C and Sr–Nd–O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim large igneous province. Geochim Cosmochim Acta 202:159–178

    Google Scholar 

  • Chu ZY, Wu FY, Walker RJ, Rudnick RL, Pitcher L, Puchtel IS, Yang YH, Wilde SA (2009) Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J Petrol 50:1857–1898

    Google Scholar 

  • Cottrell E, Kelley KA (2013) Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 340:1314–1317

    Google Scholar 

  • Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonaterich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124

    Google Scholar 

  • Dave R, Li A (2016) Destruction of the Wyoming craton: seismic evidence and geodynamic processes. Geology 44:883–886

    Google Scholar 

  • Davies GR, Stolz AJ, Mahotkin IL, Nowell GM, Pearson DG (2006) Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J Petrol 47:1119–1146

    Google Scholar 

  • Delavault H, Chauvel C, Thomassot E, Devey CW, Dazas B (2016) Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc Nat Acad Sci 113:12952–12956

    Google Scholar 

  • Dudas FO, Carlson RW, Eggler DH (1987) Regional Middle Proterozoic enrichment of the subcontinental mantle source of igneous rocks from central Montana. Geology 15:22–25

    Google Scholar 

  • Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212

    Google Scholar 

  • Foley SF (1992) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204

    Google Scholar 

  • Foley SF (1993) An experimental study of olivine lamproite: first results from the diamond stability field. Geochim Cosmochim Acta 57:483–489

    Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contrib Miner Petrol 94:183–192

    Google Scholar 

  • Förster MW, Prelevic D, Schmuck HR, Buhre S, Marschall HR, Mertz-Kraus R, Jacob DE (2018) Melting phlogopite-rich MARID: lamproites and the role of alkalis in olivine-liquid Ni-partitioning. Chem Geol 476:429–440

    Google Scholar 

  • Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scottsmith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70

    Google Scholar 

  • Frost CD, Frost BR, Chamberlain KR, Hulsebosch TP (1998) The late Archean history of the Wyoming Province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Res 89:145–173

    Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14(3):489–518

    Google Scholar 

  • Gasperini D, Blichert-Toft J, Bosch D, Del Moro A, Macera P, Telouk P, Albarede F (2000) Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth’s mantle. Nature 408:701–704

    Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Google Scholar 

  • Hauri EH, Hart SR (1993) Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet Sci Lett 114:353–371

    Google Scholar 

  • WD Hausel (1998) Diamonds and mantle source rocks in the Wyoming craton, with a discussion of other US occurrences Wyoming State Geological Survey. Rep Inv 53:93

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489

    Google Scholar 

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484

    Google Scholar 

  • Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schonberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Miner Petrol 142:520–542

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Hu Y, Harrington MD, Sun Y, Yang Z, Konter J, Teng FZ (2016) Magnesium isotopic homogeneity of San Carlos olivine: a potential standard for Mg isotopic analysis by multi-collector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 30:2123–2132

    Google Scholar 

  • Huang KJ, Teng FZ, Elsenouy A, Li WY, Bao ZY (2013) Magnesium isotopic variations in loess: origins and implications. Earth Planet Sci Lett 374:60–70

    Google Scholar 

  • Jackson MG, Hart SR, Koppers AAP, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell JA (2007) The return of subducted continental crust in Samoan lavas. Nature 448:684–687

    Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257

    Google Scholar 

  • Kemp JF, Knight WC (1903) Leucite Hills of Wyoming. Geol Soc Am Bull 4:305–336

    Google Scholar 

  • Kuehner SM, Edgar AD, Arima M (1981) Petrogenesis of the ultrapotassic rocks from the Leucite Hills, Wyoming. Am Miner 66:663–677

    Google Scholar 

  • Lange RA, Carmichael ISE, Hall CM (2000) 40Ar/39Ar chronology of the Leucite Hills, Wyoming: eruption rates, erosion rates, and an evolving temperature structure of the underlying mantle. Earth Planet Sci Lett 174:329–340

    Google Scholar 

  • Li WY, Teng FZ, Ke S, Rudnick RL, Gao S, Wu FY, Chappell BW (2010) Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta 74:6867–6884

    Google Scholar 

  • Li CF, Chu ZY, Guo JH, Li YL, Yang YH, Li XH (2015) A rapid single column separation scheme for high-precision Sr–Nd–Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Anal Methods 7:4793–4802

    Google Scholar 

  • Li CF, Wang XC, Guo JH, Chu ZY, Feng LJ (2016a) Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. J Anal at Spectrom 31:1150–1159

    Google Scholar 

  • Li WY, Teng FZ, Halama R, Keller J, Klaudius J (2016b) Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania. Earth Planet Sci Lett 444:26–33

    Google Scholar 

  • Li SG, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang XC, Xia Q, Sun W, Yang X, Ren ZY, Wei H, Liu Y, Meng F, Yan J (2017) Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev 4:111–120

    Google Scholar 

  • Liu L, Gurnis M, Seton M, Saleeby J, Muller DR, Jackson JM (2010) The role of oceanic plateau subduction in the Laramide orogeny. Nat Geosci 3:353–357

    Google Scholar 

  • Martin AM, Hammouda T (2011) Role of iron and reducing conditions on the stability of dolomite + coesite between 4.25 and 6 GPa—a potential mechanism for diamond formation during subduction. Eur J Mineral 23:5–16

    Google Scholar 

  • Mirnejad H, Bell K (2006) Origin and source evolution of the Leucite Hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Petrol 47:2463–2489

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Springer Science and Business Media, Berlin, p 447

    Google Scholar 

  • Moore M, Chakhmouradian AR, Mariano AN, Sidhu R (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geol Rev 64:499–521

    Google Scholar 

  • Mueller PA, Frost CD (2006) The Wyoming province: a distinctive Archean craton in Laurentian North America. Can J Earth Sci 43:1391–1397

    Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 43:981–1001

    Google Scholar 

  • Nelson DR (1989) Isotopic characteristics and petrogenesis of the lamproites and kimberlites of central west Greenland. Lithos 22:265–274

    Google Scholar 

  • Ngwenya NS, Tappe S (2021) Diamondiferous lamproites of the Luangwa Rift in central Africa and links to remobilized cratonic lithosphere. Chem Geol. https://doi.org/10.1016/j.chemgeo.2020.120019

    Article  Google Scholar 

  • Othman DB, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21

    Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducted sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Prelevic D, Foley SF, Romer R, Conticelli S (2008) Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim Cosmochim Acta 72:2125–2156

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry. Elsevier, Oxford, pp 1–51

    Google Scholar 

  • Saenger C, Wang Z (2014) Magnesium isotope fractionation in biogenic and abiogenic carbonates: implications for paleoenvironmental proxies. Quatern Sci Rev 90:1–21

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4:8003

    Google Scholar 

  • Stracke A, Tipper ET, Klemme S, Bizimis M (2018) Mg isotope systematics during magmatic processes: inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths. Geochim Cosmochim Acta 226:192–205

    Google Scholar 

  • Su BX, Hu Y, Teng FZ, Xiao Y, Zhang HF, Sun Y, Bai Y, Zhu B, Zhou XH, Ying JF (2019) Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism. Earth Planet Sci Lett 522:79–86

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, Special Publications, London, pp 313–345

    Google Scholar 

  • Sun Y, Ying JF, Zhou XH, Shao JA, Chu ZY, Su BX (2014) Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: Implications for the role of ancient subducted sediments. Lithos 208:53–66

    Google Scholar 

  • Sun Y, Teng FZ, Ying JF, Su BX, Hu Y, Fan QC, Zhou XH (2017) Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. J Geophys Res Solid Earth 122:7562–7572

    Google Scholar 

  • Tappe S, Foley SF, Stracke A, Romer RL, Kjarsgaard BA, Heaman LM, Joyce N (2007) Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet Sci Lett 256:433–454

    Google Scholar 

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite: diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Google Scholar 

  • Teng FZ (2017) Magnesium isotope geochemistry. Rev Mineral Geochem 82:219–287

    Google Scholar 

  • Teng FZ, Wadhwa M, Helz RT (2007) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett 261:84–92

    Google Scholar 

  • Teng FZ, Li WY, Ke S, Marty B, Dauphas N, Huang S, Wu FY, Pourmand A (2010) Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 74:4150–4166

    Google Scholar 

  • Teng FZ, Li WY, Ke S, Yang W, Liu SA, Sedaghatpour F, Wang SJ, Huang KJ, Hu Y, Ling MX, Xiao Y, Liu XM, Li XW, Gu HO, Sio CK, Wallace DA, Su BX, Zhao L, Chamberlin J, Harrington M, Brewer A (2015) Magnesium isotopic compositions of international geological reference materials. Geostand Geoanal Res 39:329–339

    Google Scholar 

  • Tian HC, Yang W, Li SG, Ke S, Chu ZY (2016) Origin of low δ26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta 188:93–105

    Google Scholar 

  • Wang SJ, Teng FZ, Scott JM (2016) Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta 185:78–87

    Google Scholar 

  • Wang XJ, Chen LH, Hofmann AW, Mao FG, Liu JQ, Zhong Y, Xie LW, Yang YH (2017) Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett 465:16–28

    Google Scholar 

  • Wang XJ, Chen LH, Hofmann AW, Hanyu T, Kawabata H, Zhong Y, Xie LW, Shi JH, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov BS, Kimura JI (2018) Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc Natl Acad Sci 115:8682–8687

    Google Scholar 

  • White WM (2010) Oceanic island basalts and mantle plumes: the geochemical perspective. Annu Rev Earth Planet Sci 38:133–160

    Google Scholar 

  • Willbold M, Stracke A (2010) Formation of enriched mantle components by recycling of upper and lower continental crust. Chem Geol 276:188–197

    Google Scholar 

  • Wilson M (1993) Magmatic Differentiation. J Geol Soc 150:611–624

    Google Scholar 

  • Woodhead JD (1996) Extreme HIMU in an oceanic setting: The geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook-Austral hotspot. J Volcanol Geotherm Res 72:1–19

    Google Scholar 

  • Xiang L, Zheng JP, Zhai MG, Siebel W (2020) Geochemical and Sr–Nd–Pb isotopic constraints on the origin and petrogenesis of Paleozoic lamproites in the southern Yangtze Block South China. Contrib Miner Petrol 175:29

    Google Scholar 

  • Xiao Y, Teng FZ, Su BX, Hu Y, Zhou MF, Zhu B, Shi RD, Huang QS, Gong XH, He YS (2016) Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite Tibet. Geochem Geophys Geosyst 17:940–953

    Google Scholar 

  • Yang W, Teng FZ, Li WY, Liu SA, Ke S, Liu YS, Zhang HF, Gao S (2016) Magnesium isotopic composition of the deep continental crust. Am Miner 101:243–252

    Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Google Scholar 

Download references

Acknowledgements

We appreciate Roger H. Mitchell, Alex McCoy-West, Caroline Soderman, Sebastian Tappe and one anonymous reviewer for their helpful and constructive comments, which greatly improved the quality of our manuscript. The editor Prof. Hans Keppler is thanked for his careful and efficient editorial handling. This work was financially supported by the National Natural Science Foundation of China (Grants 41873036, 41703031 and 41729001), the China Postdoctoral Science Foundation (Grant 2017M620899), and Ministry of Science and Technology, Taiwan, Republic of China (MOST 109-2116-M-001-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sun.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Teng, FZ., Pang, KN. et al. Multistage mantle metasomatism deciphered by Mg−Sr−Nd−Pb isotopes in the Leucite Hills lamproites. Contrib Mineral Petrol 176, 45 (2021). https://doi.org/10.1007/s00410-021-01801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01801-9

Keywords

Navigation