Skip to main content
Log in

Quantification of Wall Loss Defect in Glass Fiber Reinforced Polymer Curved Composites Using Lock-In Thermography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

GFRP pipes are increasingly used all around the globe mainly because of its high corrosive resistance and light weight properties. GFRP are employed in the industries involving chemical processes, such as, water treatment, desalination and in petrochemical industries for handling oil & gas at offshore platforms. The studies on the reliability of the GFRP pipes and its defect occurring probabilities are widely performed, in which, pitting or wall loss defect is one of the severe defects which may produce in service stage and lead to leakage accidents. This paper explores the potential of lock-in results to quantification of pitting or wall loss defects in unidirectional filament wound GFRP curved composite materials. This work is focusing on quantification of defect depth through thermal diffusion and amplitude contrast methods. For defect sizing Full Width at Half Maximum method (FWHM) has been used. A detailed systematic investigation on defect depth and size quantification at various depths of the unidirectional GFRP curved sample is studied with the amplitude and phase images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ArabiHassen, A., Vaidya, U.K., Britt, F.: Structural integrity of fibre reinforced plastic piping. Mater. Eval. 73, 918–929 (2015)

    Google Scholar 

  2. Ainsworth, L.: Fibre Reinforced plastics pipes and applications. Composites 12, 185–190 (1981). https://doi.org/10.1016/0010-4361(81)90501-2

    Article  Google Scholar 

  3. Wright, M.: Ultrasonic nondestructive evaluation of GRP pipes—Sure2GriP—quality assurance and structural evaluation of GRP pipes horizontal research activities involving SME. In: European conference on NDT 2006, Berlin, Germany, pp 1–10 (2006)

  4. Montanini, R., Freni, F.: Non-destructive evaluation of thick glass fiber-reinforced composites by means of optically excited lock-in thermography. Compos. A 43, 2075–2082 (2012). https://doi.org/10.1016/j.compositesa.2012.06.004

    Article  Google Scholar 

  5. Gashoot, S.R., Al-Madani, R.A.: A survey of GRP pipes defects and damage due to fabrication processes. In: International Conference on Production and Mechanical Engineering (ICPME’2014), 30–31 December 2014, Bangkok, Thailand (2014)

  6. Shen, G., Li, T.: Infrared thermography test for high temperature pressure pipe. Insight 49, 151–153 (2007). https://doi.org/10.1784/insi.2007.49.3.151

    Article  Google Scholar 

  7. Dong, J., Kim, B., Locquet, A., McKeon, P., Declercq, N., Citrin, D.S.: Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Composites B Eng. 79, 667–675 (2015). https://doi.org/10.1016/j.compositesb.2015.05.028

    Article  Google Scholar 

  8. Gholizadeh, S.: A review of non-destructive testing methods of composite materials. Procedia Struct. Integrity 1, 50–57 (2016). https://doi.org/10.1016/j.prostr.2016.02.008

    Article  Google Scholar 

  9. Scott, I.G., Scala, C.M.: A review of non-destructive testing of composite materials. NDT Int. 15, 75–86 (1982). https://doi.org/10.1016/0308-9126(82)90001-3

    Article  Google Scholar 

  10. Sharath, D., Menaka, M., Venkatraman, B.: Defect characterization using pulsed and lock-in thermography: a comparative study. J. Non-destruct. Test. Eval. 32, 134–141 (2012)

    Google Scholar 

  11. Vijayaraghavan, G.K., Sundaravalli, S.: Evaluation of pits in GRP composite pipes by thermal NDT technique. J. Reinfor. Plastics Compos 30, 1599–1604 (2011). https://doi.org/10.1177/0731684411423119

    Article  Google Scholar 

  12. Busse, G.: Optoacoustic phase angle measurement for probing a metal. Appl. Phys. Lett. 35, 759–760 (1978). https://doi.org/10.1063/1.90960

    Article  Google Scholar 

  13. Montanini, R.: Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography. Infrared Phys. Technol. 53, 363–371 (2010). https://doi.org/10.1016/j.infrared.2010.07.002

    Article  Google Scholar 

  14. Menaka, M., Sharath, D., Venkatraman, B., Raj, B.: Precise depth detection of EDM notches by lock-in thermography. J. Non-destruct. Test. Eval. 8, 15–18 (2009)

    Google Scholar 

  15. Choia, M., Kanga, K., Parka, J., Kimb, W., Kimc, K.: Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography. NDT&E Int. 41, 119–124 (2008). https://doi.org/10.1016/j.ndteint.2007.08.006

    Article  Google Scholar 

  16. Sharath, A., Menaka, M., Venkatraman, B., Raj, B.: Defect depth quantification using lockin thermography. Quant. Infrared Thermogr. J. 12, 37–52 (2015). https://doi.org/10.1080/17686733.2015.1013663

    Article  Google Scholar 

  17. Ranjit, S., Choi, M., Kim, W.: Quantification of defects depth in glass fiber reinforced plastic plate by infrared lock-in thermography. J. Mech. Sci. Technol. 30, 1111–1118 (2016). https://doi.org/10.1007/s12206-016-0215-5

    Article  Google Scholar 

  18. Sakagami, T., Kubo, S.: Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations. Infrared Phys. Technol. 43, 211–218 (2002). https://doi.org/10.1016/S1350-4495(02)00141-X

    Article  Google Scholar 

  19. Saintey, M.B., Almond, D.P.: Defect sizing by transient thermography. II. A numerical treatment. J. Phys. D Appl. Phys 28, 2539–2546 (1995). https://doi.org/10.1088/0022-3727/28/12/023

    Article  Google Scholar 

  20. Vavilov, V.P., Pawar, S.: Determining the lateral size of subsurface defects during active thermal nondestructive testing. Russ J Nondestruct Test 52, 528–531 (2016). https://doi.org/10.1134/S1061830916090084

    Article  Google Scholar 

  21. Meola, C., Carlomagno, G.M., Squillace, A., Giorleo, G.: Non-destructive control of industrial materials by means of lock-in thermography. Meas. Sci. Technol. 13, 1583–1590 (2002). https://doi.org/10.1088/0957-0233/13/10/311

    Article  Google Scholar 

  22. Wui, D., Rantala, J., Karpeni, W., Zenzinger, G., SchOnbach, B., Rippeli, W., Steegmiilleri, R., Dieneri, L., Busse, G.: Applications of lockin-thermography methods. Rev. Prog. Quant. Nondestruct. Eval. 15, 511–518 (1996). https://doi.org/10.1007/978-1-4613-0383-1_65

    Article  Google Scholar 

  23. Wallbrink, C., Wade, S.A., Jones, R.: The effect of size on the quantitative estimation of defect depth in steel structures using lock-in thermography. J. Appl. Phys. 101, 104907 (2007). https://doi.org/10.1063/1.2732443

    Article  Google Scholar 

  24. Meola, C., Carlomagno, G.M.: Impact damage in GFRP: new insights with infrared thermography. Compos. A Appl. Sci. Manuf. 41, 1839–1847 (2010). https://doi.org/10.1016/j.compositesa.2010.09.002

    Article  Google Scholar 

  25. Palumbo, D., Tamborrino, R., Galietti, U., Aversa, P., Tatì, A., Luprano, V.A.M.: Ultrasonic analysis and lock-in thermography for debonding evaluation of composite adhesive joints. NDT&E Int. 78, 1–9 (2016). https://doi.org/10.1016/j.ndteint.2015.09.001

    Article  Google Scholar 

  26. Vijayaragavan, G.K., Majumder, M., Ramachandran, K.P.: NDTE using flash thermography: numerical modelling and analysis of delaminations in GRP pipes. Insight 52, 481–487 (2010)

    Article  Google Scholar 

  27. Palumbo, D.: On the thickness quantification of composite materials by using lock-in thermography. Materials 12(7), 1185 (2019). https://doi.org/10.3390/ma12071185

    Article  Google Scholar 

  28. Junyan, L., Liqiang, L., Yang, W.: Experimental study on active infrared thermography as a NDI tool for carbon–carbon composites. Composites Part B Eng. (2013). https://doi.org/10.1016/j.compositesb.2012.09.006

    Article  Google Scholar 

  29. Krapez, J.C.: Compared performances of four algorithms used for modulation thermography. In: Quantitative Infrared Thermography—QIRT’98, Łódź, Poland. https://doi.org/10.21611/qirt.1998.023.

Download references

Acknowledgements

The authors thank Director, Indira Gandhi centre for Atomic Research, Kalpakkam for permitting to use the lock-in thermographic facility. This research received no specific scholarship from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomathi, R., Ashok, M., Menaka, M. et al. Quantification of Wall Loss Defect in Glass Fiber Reinforced Polymer Curved Composites Using Lock-In Thermography. J Nondestruct Eval 40, 42 (2021). https://doi.org/10.1007/s10921-021-00774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00774-w

Keywords

Navigation