Skip to main content
Log in

On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In this article, we analyse the usefulness of multidimensional scaling in relation to performing K-means clustering on a dissimilarity matrix, when the dimensionality of the objects is unknown. In this situation, traditional algorithms cannot be used, and so K-means clustering procedures are being performed directly on the basis of the observed dissimilarity matrix. Furthermore, the application of criteria originally formulated for two-mode data sets to determine the number of clusters depends on their possible reformulation in a one-mode situation. The linear invariance property in K-means clustering for squared dissimilarities, together with the use of multidimensional scaling, is investigated to determine the cluster membership of the observations and to address the problem of selecting the number of clusters in K-means for a dissimilarity matrix. In particular, we analyse the performance of K-means clustering on the full dimensional scaling configuration and on the equivalently partitioned configuration related to a suitable translation of the squared dissimilarities. A Monte Carlo experiment is conducted in which the methodology examined is compared with the results obtained by procedures directly applicable to a dissimilarity matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, R. A., & Gower, J. C. (1990). Approximating a symmetric matrix. Psychometrika, 55, 665–675.

    Article  Google Scholar 

  • Borg, I. & Groenen, P. J. F. (2005). Modern multidimensional scaling. Theory and applications, Springer series in statistics, 2nd Ed. Springer.

  • Brusco, M. J., & Steinley, D. (2007). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72, 583–600.

    Article  Google Scholar 

  • Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48(2), 305–308.

    Article  Google Scholar 

  • Calinski, R. B., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3, 1–27.

    Google Scholar 

  • Chae, S. S., Dubien, J. L., & Warde, W. D. (2006). A method of predicting the number of clusters using rand’s statistic. Computational Statistics and Data Analysis, 50(12), 3531–3546.

    Article  Google Scholar 

  • Chiang, M. M., & Mirkin, B. (2010). Intelligent choice of the number of cluster in K-means clustering: an experimental study with different cluster spreads. Journal of Classification, 27, 3–40.

    Article  Google Scholar 

  • Cilibrasi, R. & Vitanyi, P. (2004). Automatic meaning discovery using Google. Technical Report (pp. 1–31). University of Amsterdam, National ICT of Australia.

  • De Leeuw, J., & Groenen, P. J. F. (1997). Inverse multidimensional scaling. Journal of Classification, 14, 3–21.

    Article  Google Scholar 

  • De Leeuw J. & Heiser W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P.R. Krishnaiah (Ed.), Multivariate analysis (Vol. V, pp. 501–522). North-Holland.

  • DeSarbo, W., Carroll, J. D., Clark, L., & Green, P. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 57–78.

    Article  Google Scholar 

  • Duin R. P. (2012). PRTools. http://www.prtools.org.

  • Everitt, B. S., Landau, S., Leese, M. & Stahl, D. (2011). Cluster analysis. Wiley series in probability and statistics (5th ed.). Wiley.

  • Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., & Zhang, J. (2008). Graph distances in the streaming model. SIAM Journal on Computing, 38(5), 1709–1727.

    Article  Google Scholar 

  • Hartigan, J. A. (1975). Clustering algorithms. Wiley

  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A \(K\)-means clustering algorithm. Applied Statistics, 28, 100–108.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.

  • Heiser, W. J., & Groenen, P. J. F. (1997). Cluster differences scaling with a within-clusters loss component and a fuzzy succesive approximation strategy to avoid local minima. Psychometrika, 62(1), 63–83.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.

    Article  Google Scholar 

  • Kak, S. (2002). A class of instantaneously trained neural networks. Information Sciences, 148, 97–102.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. Wiley.

  • Krzanowski, W. J., & Lai, Y. T. (1985). A criterion for determining the number of groups in a data set using sum of squares clustering. Biometrics, 44, 23–34.

    Article  Google Scholar 

  • Lichtenauer, J. F., Hendriks, E. A., & Reinders, M. J. T. (2008). Sign language recognition by combining statistical DTW and independent classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 2040–2046.

    Article  PubMed  Google Scholar 

  • Lingoes, J. C. (1971). Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika, 36, 195–203.

    Article  Google Scholar 

  • Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(1982), 129–137.

    Article  Google Scholar 

  • Mardia, K. V. (1978). Some properties of clasical multi-dimesional scaling. Communications in Statistics-Theory and Methods, 7(13), 1233–1241.

    Article  Google Scholar 

  • Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software. Journal of Classification, 18, 245–271.

    Article  Google Scholar 

  • McQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In 5th Berkeley symposium on mathematical statistics and probability (Vol. II, pp. 281–297).

  • Melnykov, V., Chen, W.-C., & Maitra, R. (2012). MixSim: An R package for simulating data to study performance of clustering algorithms. Journal of Statistical Software, 51(12), 1–25.

    Article  Google Scholar 

  • Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159–179.

    Article  Google Scholar 

  • Pekalska, E., Paclik, P., & Duin, R. P. (2001). A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research, 2(Dec), 175–211.

    Google Scholar 

  • Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical Society, A, 145, 285–312.

    Article  Google Scholar 

  • Schleif, F. M. (2015). Generic probabilistic prototype based classification of vectorial and proximity data. Neurocomputing, 154, 208–216.

    Article  Google Scholar 

  • Schleif, F. M., Chen, H. & Tino, P. (2015). Incremental probabilistic classification vector machine with linear costs. In Proceedings of IJCNN (Vol. 2015).

  • Schwarz, A. J. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2001). Alignment-based recognition of shape outlines. In International workshop on visual form (pp. 606–618). Springer.

  • Steinley, D. (2006). \(K\)-means clustering: A half-century synthesis. British Journal of Mathematical and Statistical Psychology, 59, 1–34.

    Article  PubMed  Google Scholar 

  • Steinley, D. (2008). Stability analysis in \(K\)-means clustering. British Journal of Mathematical and Statistical Psychology, 61, 255–273.

    Article  PubMed  Google Scholar 

  • Steinley, D., & Brusco, M. J. (2007). Initializing \(K\)-means batch clustering: A critical evaluation of several techniques. Journal of Classification, 24, 99–121.

    Article  Google Scholar 

  • Steinley, D., & Brusco, M. J. (2011). Choosing the number of clusters in K-means clustering. Psychological Methods, 16(3), 285–297.

    Article  PubMed  Google Scholar 

  • Steinley, D., & Hubert, L. (2008). Order constrained solutions in K-means clustering: Even better than being globally optimal. Psychometrika, 73(4), 647–664.

    Article  Google Scholar 

  • Sugar, C. A., & James, G. M. (2003). Finding the number of clusters in a dataset: An information-theoretic approach. Journal of the American Statistical Asssociation, 98, 750–762.

    Article  Google Scholar 

  • Takane, Y., Young, F., & de Leeuw, J. (1976). Non-metric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42, 7–67.

    Article  Google Scholar 

  • Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society B, 63, 411–423.

    Article  Google Scholar 

  • Vera, J. F. (2017). Distance stability analysis in multidimensional scaling using the jackknife method. British Journal of Mathematical and Statistical Psychology, 70, 25–41.

    Article  PubMed  Google Scholar 

  • Vera, J. F., & Macías, R. (2017). Variance-based cluster selection criteria in a \(K\)-means framework for one-mode dissimilarity data. Psychometrika, 82(2), 275–294.

    Article  PubMed  Google Scholar 

  • Vera, J. F., Macías, R., & Angulo, J. M. (2008). Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints. Stochastic Environmental Research and Risk Assessment, 22, 95–106.

    Article  Google Scholar 

  • Vera, J. F., Macías, R., & Angulo, J. M. (2009). A latent class MDS model with spatial constraints for non-stationary spatial covariance estimation. Stochastic Environmental Research and Risk Assessment, 23(6), 769–779.

    Article  Google Scholar 

  • Vera, J. F., Macías, R., & Heiser, W. J. (2009a). A latent class multidimensional scaling model for two-way one-mode continuous rating dissimilarity data. Psychometrika, 74(2), 297–315.

    Article  Google Scholar 

  • Vera, J. F., Macías, R., & Heiser, W. J. (2009b). A dual latent class unfolding model for two-way two-mode preference rating data. Computational Statistics and Data Analysis, 53(8), 3231–3244.

    Article  Google Scholar 

  • Vera, J. F., Macías, R., & Heiser, W. J. (2013). Cluster differences unfolding for two-way two-mode preference rating data. Journal of Classification, 30, 370–396.

    Article  Google Scholar 

  • Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105(490), 713–726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Mandziuk, J., Quek, C. H., & Goh, B. W. (2017). Curvature-based method for determining the number of clusters. Information Sciences, 415, 414–428.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Grants ECO2013-48413-R of the Spanish Ministry of Economy and Competitiveness, co-financed by FEDER, and RTI2018-099723-B-I00, Ministry of Science and Innovation—State Research Agency of Spain, co-financed by FEDER (J. Fernando Vera) and CB-252996, CONACYT, México (Rodrigo Macías).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernando Vera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 53 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera, J.F., Macías, R. On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling. Psychometrika 86, 489–513 (2021). https://doi.org/10.1007/s11336-021-09757-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-021-09757-2

Keywords

Navigation