Skip to main content
Log in

Robust Inference for Mediated Effects in Partially Linear Models

  • Theory and Methods (T&M)
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We consider mediated effects of an exposure, X on an outcome, Y, via a mediator, M, under no unmeasured confounding assumptions in the setting where models for the conditional expectation of the mediator and outcome are partially linear. We propose G-estimators for the direct and indirect effects and demonstrate consistent asymptotic normality for indirect effects when models for the conditional means of M, or X and Y are correctly specified, and for direct effects, when models for the conditional means of Y, or X and M are correct. This marks an improvement, in this particular setting, over previous ‘triple’ robust methods, which do not assume partially linear mean models. Testing of the no-mediation hypothesis is inherently problematic due to the composite nature of the test (either X has no effect on M or M no effect on Y), leading to low power when both effect sizes are small. We use generalized methods of moments (GMM) results to construct a new score testing framework, which includes as special cases the no-mediation and the no-direct-effect hypotheses. The proposed tests rely on an orthogonal estimation strategy for estimating nuisance parameters. Simulations show that the GMM-based tests perform better in terms of power and small sample performance compared with traditional tests in the partially linear setting, with drastic improvement under model misspecification. New methods are illustrated in a mediation analysis of data from the COPERS trial, a randomized trial investigating the effect of a non-pharmacological intervention of patients suffering from chronic pain. An accompanying R package implementing these methods can be found at github.com/ohines/plmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American Sociological Review, 40(1), 37.

    Article  Google Scholar 

  • Aroian, L. A. (1947). The probability function of the product of two normally distributed variables. The Annals of Mathematical Statistics, 18(2), 265–271.

    Article  Google Scholar 

  • Avagyan, V., & Vansteelandt, S. (2017). Honest data-adaptive inference for the average treatment effect under model misspecification using penalised bias-reduced double-robust estimation. arXiv:1708.03787. Forthcoming in Biostatistics and Epidemiology.

  • Baron, R. M., & Kenny, D. A. (1986). The moderator mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.

    Article  Google Scholar 

  • Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., & Newey, W. (2017). Double/debiased/neyman machine learning of treatment effects. American Economic Review, 107(5), 261–265.

    Article  Google Scholar 

  • Drton, M., & Xiao, H. (2016). Wald tests of singular hypotheses. Bernoulli, 22(1), 38–59.

    Article  Google Scholar 

  • Dufour, J.-M., Renault, E., & Zinde-Walsh, V. (2013). Wald tests when restrictions are locally singular. arXiv:1312.0569.

  • Dufour, J. M., Trognon, A., & Tuvaandorj, P. (2017). Invariant tests based on M-estimators, estimating functions, and the generalized method of moments. Econometric Reviews, 36(1–3), 182–204.

    Article  Google Scholar 

  • Dukes, O. & Vansteelandt, S. (2019). Uniformly valid confidence intervals for conditional treatment effects in misspecified high-dimensional models. arXiv:1903.10199.

  • Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. Multivariate Behavioral Research, 47(1), 61–87.

    Article  Google Scholar 

  • Giersbergen, N. (2014). Inference about the indirect effect: a likelihood approach. UvA-Econometrics Working Papers 14-10, Universiteit van Amsterdam, Dept. of Econometrics.

  • Glonek, G. F. V. (1993). On the behaviour of wald statistics for the disjunction of two regular hypotheses. Journal of the Royal Statistical Society. Series B (Methodological), 55(3), 749–755.

    Article  Google Scholar 

  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029.

    Article  Google Scholar 

  • Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Guilford Press, New York, NY, 2 edition.

  • Imai, K., Keele, L., & Tingley, D. (2010a). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309–334.

    Article  Google Scholar 

  • Imai, K., Keele, L., & Yamamoto, T. (2010b). Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science, 25(1), 51–71.

    Article  Google Scholar 

  • Kang, J. D., & Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science, 22(4), 523–539.

    Google Scholar 

  • Kennedy, E. H. (2015). Semiparametric theory and empirical processes in causal inference. arXiv:1510.04740.

  • Kenny, D. A., & Judd, C. M. (2014). Power anomalies in testing mediation. Psychological Science, 25(2), 334–339.

    Article  Google Scholar 

  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Multivariate applications series. New York, NY: Taylor & Francis Group/Lawrence Erlbaum Associates.

    Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104.

    Article  Google Scholar 

  • Naimi, A. I., Cole, S. R., & Kennedy, E. H. (2017). An introduction to G methods. International Journal of Epidemiology, 46(2), 756–762.

    PubMed  Google Scholar 

  • Newey, W. K., & West, K. D. (1987). Hypothesis testing with efficient method of moments estimation. International Economic Review, 28(3), 777.

    Article  Google Scholar 

  • Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypotheses. In U. Grenander (Ed.), Probability and Statistics: The Harald Cramer Volume (pp. 213–234). Stockholm: Almqvist and Wiskell.

    Google Scholar 

  • Pearl, J. (2001). Direct and Indirect Effects. In Proceedings of 17th conference on uncertainy in articial intelligence, pp. 411–420. San Francisco. Morgan Kaufmann.

  • Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Communications in Statistics - Theory and Methods, 23(8), 2379–2412.

    Article  Google Scholar 

  • Robins, J. M., & Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology, 3(2), 143–155.

    Article  Google Scholar 

  • Rotnitzky, A., Lei, Q., Sued, M., & Robins, J. M. (2012). Improved double-robust estimation in missing data and causal inference models. Biometrika, 99(2), 439–456.

    Article  Google Scholar 

  • Rotnitzky, A., Li, L., & Li, X. (2010). A note on overadjustment in inverse probability weighted estimation. Biometrika, 97(4), 997–1001.

    Article  Google Scholar 

  • Rotnitzky, A., & Vansteelandt, S. (2014). Double-robust methods. In G. Molenberghs, G. Fitzmaurice, M. Kenward, A. Tsiatis, & G. Verbeke (Eds.), Handbook of missing data methodology, chapter 9 (pp. 185–212). New York: CRC Press.

    Google Scholar 

  • Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13(1982), 290.

    Article  Google Scholar 

  • Taylor, S. J., Carnes, D., Homer, K., Pincus, T., Kahan, B. C., Hounsome, N., et al. (2016). Improving the self-management of chronic pain: COping with persistent pain, effectiveness research in self-management (COPERS). Programme Grants for Applied Research, 4(14), 1–440.

    Article  Google Scholar 

  • Tchetgen Tchetgen, E. J., & Shpitser, I. (2012). Semiparametric theory for causal mediation analysis: Efficiency bounds, multiple robustness and sensitivity analysis. Annals of Statistics, 40(3), 1816–1845.

    Article  Google Scholar 

  • Tchetgen Tchetgen, E. J., & Shpitser, I. (2014). Estimation of a semiparametric natural direct effect model incorporating baseline covariates. Biometrika, 101(4), 849–864.

    Article  Google Scholar 

  • Tsiatis, A. A. (2006). Semiparametric theory and missing data. New York: Springer Series in Statistics, Springer.

    Google Scholar 

  • van Garderen, K. J., & van Giersbergen, N. (2019). Almost Similar Tests for Mediation Effects Hypotheses with Singularities. arXiv:2012.11342.

  • VanderWeele, T. J., & Vansteelandt, S. (2009). Conceptual issues concerning mediation, interventions and composition. Statistics and Its Interface, 2(4), 457–468.

    Article  Google Scholar 

  • Vansteelandt, S. (2012). Understanding counterfactual-based mediation analysis approaches and their differences. Epidemiology, 23(6), 889–891.

    Article  Google Scholar 

  • Vansteelandt, S., & Joffe, M. (2014). Structural nested models and g-estimation: The partially realized promise. Statistical Science, 29(4), 707–731.

    Article  Google Scholar 

  • Vermeulen, K., & Vansteelandt, S. (2015). Bias-reduced doubly robust estimation. Journal of the American Statistical Association, 110(511), 1024–1036.

    Article  Google Scholar 

  • Wang, K. (2018). Understanding power anomalies in mediation analysis. Psychometrika, 83(2), 387–406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Hines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 533 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hines, O., Vansteelandt, S. & Diaz-Ordaz, K. Robust Inference for Mediated Effects in Partially Linear Models. Psychometrika 86, 595–618 (2021). https://doi.org/10.1007/s11336-021-09768-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-021-09768-z

Keywords

Navigation