Skip to main content
Log in

Glaucoma detection using novel perceptron based convolutional multi-layer neural network classification

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Glaucoma in retina is considered as a significant cause of irreparable vision loss. For the automated glaucoma detection on fundus images, several approaches have been recently developed. However, the extraction of optic cup (OC) boundary considered as critical work due to the blood vessels interweavement. To accurately detect glaucoma and correspondingly the optic cup OC and optic disk (OD) boundary, the Perceptron based Convolutional Multi-Layer Neural network classification with Weighted Least Square Fit holistic feature extraction has been proposed. In this study, the Glaucoma classification has been performed using Perceptron based Convolutional Multi-Layer Neural network. The optic disc and optic cup boundary is detected by entropy based estimation. After the optic disc and cup boundary are segmented, the disc ratio and holistic local features are extracted by Weighted Least square fit. The Perceptron based Convolutional Multi-Layer Neural network classification is performed for various datasets such as Drishti-GS and Rim-ONE dataset to accurately classify the Glaucoma in retinal images. The proposed method is evaluated for the OC and OD segmentation, accurate glaucoma detection in terms of accuracy, sensitivity, specificity, dice and overlap, and Jaccard parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aamir, M., Irfan, M., Ali, T., Ali, G., Shaf, A., Al-Beshri, A., Alasbali, T., & Mahnashi, M. H. (2020). An adoptive threshold-based multi-level deep convolutional neural network for glaucoma eye disease detection and classification. Diagnostics, 10(8), 602

    Article  Google Scholar 

  • Abramoff, M. D., Alward, W. L., Greenlee, E. C., Shuba, L., Kim, C. Y., Fingert, J. H., et al. (2007). Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Investigative Ophthalmology & Visual Science, 48, 1665–1673

    Article  Google Scholar 

  • Al-Bander, B., Williams, B. M., Al-Nuaimy, W., Al-Taee, M. A., Pratt, H., & Zheng, Y. (2018). Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry, 10, 87

    Article  Google Scholar 

  • Almubarak, H., Bazi, Y., & Alajlan, N. (2020). Two-stage mask-RCNN approach for detecting and segmenting the optic nerve head, optic disc, and optic cup in fundus images. Applied Sciences, 10, 3833

    Article  Google Scholar 

  • Asuntha, A., & Srinivasan, A. (2020). Deep learning for lung Cancer detection and classification. Multimedia Tools and Applications, 79(11), 7731–7762

    Article  Google Scholar 

  • Bharati, S., Podder, P. and Mondal, M.R.H. (2020). Hybrid deep learning for detecting lung diseases from X-ray images. Informatics in Medicine Unlocked, 20, 100391.

  • Bhatkalkar, B. J., Reddy, D. R., Prabhu, S., & Bhandary, S. V. (2020). Improving the performance of convolutional neural network for the segmentation of optic disc in fundus images using attention gates and conditional random fields. IEEE Access, 8, 29299–29310

    Article  Google Scholar 

  • Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N.-M., et al. (2013). Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging, 32, 1019–1032

    Article  Google Scholar 

  • Coccia, M. (2020). Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 60, 1–11. https://doi.org/10.1016/j.techsoc.2019.101198

    Article  Google Scholar 

  • Coccia, M., & Watts, J. (2020). A theory of the evolution of technology: technological parasitism and the implications for innovation management. Journal of Engineering and Technology Management, 55, 1. https://doi.org/10.1016/j.jengtecman.2019.11.003

    Article  Google Scholar 

  • Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A. L., Razavian, N., & Tsirigos, A. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567

    Article  Google Scholar 

  • Fatima Bokhari, S. T., Sharif, M., Yasmin, M., & Fernandes, S. L. (2018). Fundus image segmentation and feature extraction for the detection of glaucoma: A new approach. Current Medical Imaging, 14, 77–87

    Article  Google Scholar 

  • Fu, H., Cheng, J., Xu, Y., & Liu, J. (2019). Glaucoma Detection Based on Deep Learning Network in Fundus Image. In Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (pp. 119–137). Springer.

  • Fu, H., Cheng, J., Xu, Y., Wong, D. W. K., Liu, J., & Cao, X. (2018). Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging, 37, 1597–1605

    Article  Google Scholar 

  • Gao, Y., Yu, X., Wu, C., Zhou, W., Wang, X., & Chu, H. (2019). Accurate and efficient segmentation of optic disc and optic cup in retinal images integrating multi-view information. IEEE Access, 7, 148183–148197

    Article  Google Scholar 

  • García, G., Colomer, A., & Naranjo, V. (2020). Glaucoma detection from raw SD-OCT volumes: A novel approach focused on spatial dependencies. Computer Methods and Programs in Biomedicine, 1, 105855.

  • Guo, F., Mai, Y., Zhao, X., Duan, X., Fan, Z., Zou, B., et al. (2018). Yanbao: a mobile app using the measurement of clinical parameters for glaucoma screening. IEEE Access, 6, 77414–77428

    Article  Google Scholar 

  • Jiang, Y., Duan, L., Cheng, J., Gu, Z., Xia, H., Fu, H., et al. (2019). Jointrcnn: A region-based convolutional neural network for optic disc and cup segmentation. IEEE Transactions on Biomedical Engineering, 67, 335–343

    Article  Google Scholar 

  • Khamparia, A., Bharati, S., Podder, P., Gupta, D., Khanna, A., Phung, T.K., & Thanh, D. N. (2020). Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimensional Systems and Signal Processing, 1–19.

  • Kumar, S., Pathak, S., & Kumar, B. (2019). Automated detection of eye related diseases using digital image processing. In Handbook of Multimedia Information Security: Techniques and Applications (pp. 513–544). Springer

  • Lazouni, M. E. A., Feroui, A., & Mahmoudi, S. (2019). A new intelligent system for glaucoma disease detection. International Journal of Computer Aided Engineering and Technology, 11, 613–633

    Article  Google Scholar 

  • Li, L., Sun, L., Xue, Y., Li, S., Huang, X., & Mansour, R. F. (2021). Fuzzy multilevel image thresholding based on improved coyote optimization algorithm. IEEE Access, 9, 33595–33607

    Article  Google Scholar 

  • Liao, W., Zou, B., Zhao, R., He, Z., & Zhou, M. (2020). Clinical interpretable deep learning model for glaucoma diagnosis. IEEE Journal of Biomedical and Health Informatics, 24(5), 1405–1412

    Article  Google Scholar 

  • Liu, Q., Hong, X., Li, S., Chen, Z., Zhao, G., & Zou, B. (2019). A spatial-aware joint optic disc and cup segmentation method. Neurocomputing, 359, 285–297

    Article  Google Scholar 

  • Mannis, M. J. (2016) Kanski's clinical ophthalmology: A systematic approach. LWW.

  • Manojprabhakaran, R. (2017). GKFCM clustering and classification for low intensity inhomogeneity glaucomatous retinal images. Indian Journal of Emerging Electronics in Computer Communications-IJEECC, 4, 672–678

    Google Scholar 

  • Mansour, R. F. (2017). Evolutionary computing enriched computer-aided diagnosis system for diabetic retinopathy: A survey. IEEE Reviews in Biomedical Engineering, 10, 334–349

    Article  Google Scholar 

  • Mansour, R. F. (2018). Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomedical Engineering Letters, 8(1), 41–57

    Article  Google Scholar 

  • Mansour, R. F., El Amraoui, A., Nouaouri, I., Díaz, V. G., Gupta, D., & Kumar, S. (2021). Artificial Intelligence and Internet of Things Enabled Disease Diagnosis Model for Smart Healthcare Systems. IEEE Access, 9, 45137–45146

    Article  Google Scholar 

  • Orlando, J. I., Fu, H., Breda, J. B., van Keer, K., Bathula, D. R., Diaz-Pinto, A., et al. (2020). Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59, 101570

    Article  Google Scholar 

  • Rehman, Z. U., Naqvi, S. S., Khan, T. M., Arsalan, M., Khan, M. A., & Khalil, M. (2019). Multi-parametric optic disc segmentation using superpixel based feature classification. Expert Systems with Applications, 120, 461–473

    Article  Google Scholar 

  • Tabassum, M., Khan, T. M., Arslan, M., Naqvi, S. S., Ahmed, M., Madni, H. A., et al. (2020). CDED-net: Joint segmentation of optic disc and optic cup for glaucoma screening. IEEE Access, 1, 1

    Google Scholar 

  • Thakur, N., & Juneja, M. (2018). Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42, 162–189

    Article  Google Scholar 

  • Xu, X., Zhang, L., Li, J., Guan, Y., & Zhang, L. (2020). A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading. IEEE Journal of Biomedical and Health Informatics, 24(2), 556–567

    Article  Google Scholar 

  • Yu, S., Xiao, D., Frost, S., & Kanagasingam, Y. (2019). Robust optic disc and cup segmentation with deep learning for glaucoma detection. Computerized Medical Imaging and Graphics, 74, 61–71

    Article  Google Scholar 

  • Zhang, L., & Lim, C. P. (2020). Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models. Applied Soft Computing, 1, 106328

    Article  Google Scholar 

  • Zhao, R., Chen, X., Chen, Z., & Li, S. (2020) EGDCL: An Adaptive Curriculum Learning Framework for Unbiased Glaucoma Diagnosis. In European Conference on Computer Vision (pp. 190–205). Springer

  • Zhao, R., & Li, S. (2020). Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Medical Image Analysis, 60(101593), 2020

    Google Scholar 

  • Zhao, R., Liao, W., Zou, B., Chen, Z., & Li, S. (2019) Weakly-supervised simultaneous evidence identification and segmentation for automated glaucoma diagnosis. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 809–816).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romany F. Mansour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, R.F., Al-Marghilnai, A. Glaucoma detection using novel perceptron based convolutional multi-layer neural network classification. Multidim Syst Sign Process 32, 1217–1235 (2021). https://doi.org/10.1007/s11045-021-00781-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-021-00781-0

Keywords

Navigation