Skip to main content
Log in

Effect of Substrate Microstructure on Thermocapillary Flow and Heat Transfer of Nanofluid Droplet on Heated Wall

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In order to reveal the effect of substrate microstructure on heat transfer of nanofluid droplet evaporation, the thermocapillary flow characteristics and heat transfer performance of nanofluid droplet on different substrates are investigated. The two-phase mixture model is used to simulate the nanofluid flow, and three kinds of micro-structured substrates (namely, sawtooth, rectangle, and parabola structures) are considered. The computational results show that micro-structured substrate can affect the temperature and flow field distributions inside the droplet, and the petal structure of isotherm and flow velocity of smooth substrate is larger than that with micro-structured substrates. The average heat flux at droplet surface increases with substrate temperature increasing, the average heat flux with rectangle substrate is larger than smooth substrate, while that of sawtooth and parabola substrate is smaller. With the increase of nanoparticle volume fraction the average heat flux at droplet surface almost increases linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Acceleration, m2/s

C p :

Specific heat, J/kgK

C B :

Boltzmann's constant, 1.38066 × 1023 J/K

D :

Diameter of droplet, m

d p :

Nanoparticle diameter, nm

f :

Friction factor

f drag :

Drag function

g :

Gravitational acceleration, m/s2

h :

Height of microstructure, m

L :

Width of microstructure, m

Ma :

Marangoni number

n :

Normal direction

Nu :

Nusselt number

P :

Pressure, Pa

Pr :

Prandtl number

Pr:

C p μ / λ

Re p :

Nanoparticle Reynolds number

S gen :

Entropy generation (W/m3K)

T :

Fluid temperature, K

T a :

Ambient temperature, K

T w :

Bottom temperature, K

\(\underset{V}{\to }\) :

Velocity vector(m/s)

u :

X-axis velocity component (m/s)

v :

Y-axis velocity component (m/s)

x :

X-axis coordinate (m)

y :

Y-axis coordinate (m)

λ :

Thermal conductivity, W/mK

γ T :

Surface tension temperature coefficient, N/mK

α p :

Nanoparticle volume fraction

μ :

Dynamic viscosity, kg/ms

ρ :

Density, kg/m3

π :

Circumference ratio

\(\Delta T\) :

System temperature difference

\(\varnothing\) :

Variables

ave:

Average value

f:

Base fluid

fr:

Freezing

nf:

Nanofluid

p:

Nanoparticles

w:

Substrate wall

a:

Ambient temperature

References

  • Bhattacharya, P., Samanta, A., Chakraborty, S.: Spray evaporative cooling to achieve ultra fast cooling in runout table. Int. J. Therm. Sci. 48, 1741–1747 (2009)

    Article  Google Scholar 

  • Corcione, M.: A semi-empirical model for predicting the effective dynamic viscosity of nanoparticle suspensions. Heat. Transf. Eng. 33, 575–583 (2012)

    Article  Google Scholar 

  • Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52, 789–793 (2011)

    Article  Google Scholar 

  • Darbha, K.G., Fischer, C., Michler, A., Luetzenkirchen, J., Schäfer, T., Heberling, F., Schild, D.: Deposition of latex colloids at rough mineral surfaces: an analogue study using nanopatterned surfaces. Langmuir 28, 6606–6617 (2012)

    Article  Google Scholar 

  • Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T.: Nanofluids science and technology. John Wiley & Sons, Hoboken, New Jersey (2008)

    Google Scholar 

  • Deegan, R.D., Bakajin, O., Dupont, T.F.: Capillary flow as the cause of ring stains from dried liquids. Nature 389, 827–829 (1997)

    Article  Google Scholar 

  • Dou, S., Hao, L.: Numerical study of droplet evaporation on heated flat and micro-pillared hydrophobic surfaces by using the lattice Boltzmann method. Chem. Eng. Sci. 229, 116032 (2021)

    Article  Google Scholar 

  • Gao, M., Zhang, Da., Kong, P., Zhang, L.-X.: Experimental investigation of Marangoni convection in a sessile droplet at a constant heat flux condition. Int. Commun. Heat Mass Transfer 115, 104600 (2020)

    Article  Google Scholar 

  • Gong, W., Yan, Y.Y., Chen, S., Giddings, D.: Numerical study of wetting transitions on biomimetic surface using a lattice Boltzmann approach with large density ratio. J. Bionic Eng. 14, 486–496 (2017)

    Article  Google Scholar 

  • Hu, H., Larson, R.G.: Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21, 3963–3971 (2005)

    Article  Google Scholar 

  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine A.S.: Fundamentals of heat and mass transfer, 6th ed., John Wiley & Sons (2006)

  • Jiang, Y.N., Zhou, X.M.: Heat transfer and entropy generation analysis of nanofluids thermocapillary convection around a bubble in a cavity. Int. Commun. Heat Mass Transfer 105, 37–45 (2019a)

    Article  Google Scholar 

  • Jiang, Y.N., Zhou, X.M.: Yang Wang, Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble. Microgravity Sci. Technol. 32, 167–177 (2020)

    Article  Google Scholar 

  • Jiang, Y.N., Xu, Z.L.: Numerical Investigation of Nanofluid Thermocapillary Convection Based on Two-Phase Mixture Model. Microgravity Sci. Technol. 29(5), 365–370 (2017)

    Article  Google Scholar 

  • Jiang, Y.N., Zhou, X.M.: Numerical study of heat transfer and entropy generation of nanofluids buoyant-thermocapillary convection around a gas bubble. Microgravity Sci. Technol. 31(2), 195–206 (2019b)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54, 4410–4428 (2011)

    Article  Google Scholar 

  • Lohani, D., Sarkar, S.: Nanoscale topographical fluctuations: A key factor for evaporative colloidal self-assembly. Langmuir 34, 12751–12758 (2018)

    Article  Google Scholar 

  • Manninen, M., Taivassalo, V., Kallio, S.: On the mixture model for multiphase flow, 288, Technical Research Center of Finland. VTT Publications 3(2), 9–18 (1996)

  • Paria, S., Chaudhuri, R.G., Jason, N.N.: Self-assembly of colloidal sulfur particles on a glass surface from evaporating sessile drops: influence of different salts. New J. Chem. 38, 5943–5951 (2014)

    Article  Google Scholar 

  • Pham, T., Kumar, S.: Drying of droplets of colloidal suspensions on rough substrates. Langmuir 33, 10061–10076 (2017)

    Article  Google Scholar 

  • Pham, T., Kumar, S.: Imbibition and evaporation of droplets of colloidal suspensions on permeable substrates. Physical Review Fluids 4, 034004 (2019)

    Article  Google Scholar 

  • Ren, M., Sweelssen, J., Grossiord, N., Gorter, H., Eggenhuisen, T.M., Andriessen, R.: Inkjet printing technology for OPV applications. J. Imaging Sci. Technol. 56(40504–40505), 40504–40501 (2012)

    Google Scholar 

  • Saada, M.A., Chikh, S., Tadrist, L.: Evaporation of a sessile drop with pinned or receding contact line on a substrate with different thermophysical properties. Int. J. Heat Mass Tran 58, (2013)

  • Schiller, L., Naumann, A.: A drag coefficient correlation. Z Ver. Deutsch Ing 77(1), 318–320 (1935)

    Google Scholar 

  • Sefiane, K., Fukatani, Y., Takata, Y., Kim, J.: Thermal patterns and hydrothermal waves (HTWs) in volatile drops. Langmuir 29, 9750–9760 (2013)

    Article  Google Scholar 

  • Sefiane, K., Moffat, J., Matar, O., Craster, R.: Self-excited hydrothermal waves in evaporating sessile drops. Appl. Phys. Lett. 93, 074103 (2008)

    Article  Google Scholar 

  • Wang, X., Liu, Z., Wang, Li., Yan, Y.: Investigation of droplet evaporation on copper substrate with different roughness. J. Bionic Eng. 17, 835–842 (2020)

    Article  Google Scholar 

  • Xu, X., Luo, J.: Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 91, 124102–1–3 (2007)

  • Ye, S., Wu, C.M., Zhang, L., Li, Y.R., Liu, Q.S.: Evolution of thermal patterns during steady state evaporation of sessile droplets. Exp. Therm. Fluid Sci. 98, 712–718 (2018)

    Article  Google Scholar 

  • Ye, S., Zhang, Li., Chun-Mei, Wu., Li, Y.-R., Liu, Q.-S.: Experimental investigation of evaporation dynamic of sessile droplets in pure vapor environment with low pressures. Int. J. Therm. Sci. 149, 106213 (2020)

    Article  Google Scholar 

  • Yu, J.-J., Hu, Y.-P., Wu, C.-M., Li, Y.-R., I.B.: Palymskiy, Direct numerical simulations of Rayleigh-Bénard convection of a gas-liquid medium near its density maximum. App. Thermal. Eng. 175, 115387 (2020)

  • Yu, J.-J., Li, Z., Li, Y.-R., Chen, J.-C.: Numerical simulations of thermocapillary flow of a binary mixture with the Soret effect in a shallow annular pool. Microgravity Sci. Technol. 28, 1–10 (2016)

    Article  Google Scholar 

  • Yu, J.-J., Tang, C.-Y., Li, Y.-R., Qin, T.: Numerical simulation study on the pure solutocapillary flow of a binary mixture with various solutal coefficients of surface tension in an annular pool. Int. Commun. Heat Mass Transfer 108, 104342 (2019)

    Article  Google Scholar 

  • Zhang, Y.J., Qian, Y.M., Liu, Z.T., Li, Z.H., Zang, D.Y.: Surface wringkling and cracking dynamics in the drying of colloidal droplets. The European Physical Journal E 37, 84 (2014)

    Article  Google Scholar 

  • Zhou, X.M., Jiang, Y.N., Hou, Y., Du, M.: Thermocapillary Convection Instability in an Annular Two-Layer System under Various Gravity Levels. Microgravity Sci. Technol. 31(5), 641–648 (2019)

    Article  Google Scholar 

  • Zu, Y.Q., Yan, Y.Y., Li, J.Q., Han, Z.W.: Wetting behaviors of a single droplet on biomimetic micro structured surfaces. J. Bionic Eng. 7, 191–198 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (No.51976080), the Fundamental Research Funds for the Central Universities (No. B200201036), and the Changzhou science and technology plan (Applied Basic Research) projects (CJ20200069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Chi, F., Chen, Q. et al. Effect of Substrate Microstructure on Thermocapillary Flow and Heat Transfer of Nanofluid Droplet on Heated Wall. Microgravity Sci. Technol. 33, 37 (2021). https://doi.org/10.1007/s12217-021-09888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09888-2

Keywords

Navigation