Skip to main content
Log in

Calculation of the effective properties of thermo-viscoelastic composites using asymptotic homogenization in parametric space

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this paper we use the method of asymptotic homogenization in parametric space to determine the effective properties of thermo-viscoelastic composite materials. These materials are composed of multilayered spherical inclusions imbedded in the matrix. In comparison with the traditional method of asymptotic homogenization, our approach allows for regular non-periodic distributions of inhomogeneities as well as dependences of the material characteristics on temperature. We start with the Laplace transform of the governing equations together with their boundary and initial conditions. To do so, we treat temperature and spatial coordinates responsible for non-periodic distribution of inclusions in the material as parameters (along with the parameter of Laplace transform itself). Then we define and implement a two-level scheme of asymptotic homogenization of the resulting equations in parametric space. At the first step, we solve the problem on the microscale level (a cell problem). At the second step, for the images of Laplace transform, we derive the macroscopic equation with effective coefficients. Finally, we perform the inverse Laplace transform to compute relaxation functions and determine thermo-viscoelastic properties of the composite material. The obtained results provide an information on how the change in properties and concentration of the inclusions affect the rheological characteristics and stress relaxation patterns for the thermo-viscoelastic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Code is available from the corresponding author on reasonable request.

References

  • Bacigalupo, A.: Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49(6), 1407–1425 (2014)

    MathSciNet  MATH  Google Scholar 

  • Bakhvalov, N., Panasenko, G.: Homogenization: Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1989)

    MATH  Google Scholar 

  • Bakhvalov, N.S.: Homogenization of partial differential equations with rapidly oscillating coefficients. Dokl. Akad. Nauk SSSR 221(3), 516–519 (1975) (in Russian)

    MathSciNet  Google Scholar 

  • Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  • Bateman, H., Erdélyi, A.: Tables of Integral Transforms. McGraw-Hill, New York (1954)

    Google Scholar 

  • Chen, Q., Wang, G., Chen, X., Geng, J.: Finite-volume homogenization of elastic/viscoelastic periodic materials. Compos. Struct. 182, 457–470 (2017)

    Google Scholar 

  • Christensen, R.M.: Theory of Viscoelasticity, An Introduction. Academic Press, New York (1971)

    Google Scholar 

  • Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)

    Google Scholar 

  • Cruz-González, O.L., Rodríguez-Ramos, R., Bravo-Castillero, J., Martinez-Rosado, R., Guinovart-Diaz, R., Otero, J.A., Sabina, F.J.: Effective viscoelastic properties of one-dimensional composites. Am. Res. Phys. 3(1), 1–17 (2017)

    Google Scholar 

  • Cruz-González, O.L., Rodríguez-Ramos, R., Otero, J.A., Ramírez-Torres, A., Penta, R., Lebon, F.: On the effective behavior of viscoelastic composites in three dimensions. Int. J. Eng. Sci. 157, 103377 (2020). https://doi.org/10.1016/j.ijengsci.2020.103377

    Article  MathSciNet  MATH  Google Scholar 

  • Del Toro, R., Bacigalupo, A., Paggi, M.: Characterization of wave propagation in periodic viscoelastic materials via asymptotic-variational homogenization. Int. J. Solids Struct. 172–173, 110–146 (2019)

    Google Scholar 

  • Ditkin, V.A., Prudnikov, A.P.: Integral Transforms and Operational Analysis. GIFML Press, Moscow (1961) (in Russian)

    Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  • Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Thermo-viscoelastic materials with fractional relaxation operators. Appl. Math. Model. 39, 7499–7512 (2015)

    MathSciNet  MATH  Google Scholar 

  • Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  • Haj-Ali, R.M., Muliana, A.H.: Micromechanical models for the nonlinear viscoelastic behavior of pultruded composite materials. Int. J. Solids Struct. 40, 1037–1057 (2003)

    MATH  Google Scholar 

  • Hashin, Z.: Viscoelastic behavior of heterogeneous media. J. Appl. Mech. 32(3), 630–636 (1965)

    Google Scholar 

  • Hashin, Z.: Complex moduli of viscoelastic composites-I. General theory and application to particular composites. Int. J. Solids Struct. 6, 539–552 (1970a)

    MATH  Google Scholar 

  • Hashin, Z.: Complex moduli of viscoelastic composites-I. General theory and application to particular composites. Int. J. Solids Struct. 6, 797–807 (1970b)

    MATH  Google Scholar 

  • Khan, K.A., Muliana, A.H.: Effective thermal properties of viscoelastic composites having field-dependent constituent properties. Acta Mech. 209, 153–178 (2010). https://doi.org/10.1007/s00707-009-0171-6

    Article  MATH  Google Scholar 

  • Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Dover, New York (1999)

    Google Scholar 

  • Krylov, V.I., Skoblya, V.S.: Approximate Fourier Transform and Laplace Transform Inversion Methods. Nauka, Moscow (1975) (in Russian)

    Google Scholar 

  • Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Applied Mathematical Science, vol. 49. Springer, New York (1985)

    MATH  Google Scholar 

  • Lakes, R.: Viscoelastic Materials. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  • Leontiev, A.F.: Exponential Series. Nauka, Moscow (1975) (in Russian)

    Google Scholar 

  • Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Mir, Moscow (1981)

    MATH  Google Scholar 

  • Li, K., Gao, X.-L., Roy, A.K.: Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech. Adv. Mat. Struct. 13(4), 317–328 (2006). https://doi.org/10.1080/15376490600583931

    Article  Google Scholar 

  • Mikhlin, S.G.: Variational Methods in Mathematical Physics. Pergamon, Oxford (1964)

    MATH  Google Scholar 

  • Muliana, A.H., Kim, J.S.: A concurrent micromechanical model for nonlinear viscoelastic behaviors of particle reinforced composites. Int. J. Solids Struct. 44, 6891–6913 (2007)

    MATH  Google Scholar 

  • Neuber, H.: Ein neuer Ansatz zur Lösung raümlicher Probleme der Elastizitätstheorie. Z. Angew. Math. Mech. 14(4), 203–212 (1934)

    MATH  Google Scholar 

  • Otero, J.A., Rodríguez-Ramos, R., Guinovart-Díaz, R., Cruz-González, O.L., Sabina, F.J., Berger, H., Böhlke, T.: Asymptotic and numerical homogenization methods applied to fibrous viscoelastic composites using Prony’s series. Acta Mech. 231, 2761–2771 (2020). https://doi.org/10.1007/s00707-020-02671-1

    Article  MathSciNet  MATH  Google Scholar 

  • Papkovich, P.F.: Solution générale des équations différentielles fondamentales de l’élasticité, exprimeé par trois fonctiones harmoniques. C. R. Acad. Sci. Paris 195, 513–515 (1932)

    Google Scholar 

  • Park, S.W., Schapery, R.A.: Method of interconversion between linear viscoelastic material functions. Part I – A numerical method based on Prony series. Int. J. Solids Struct. 36, 1653–1675 (1999)

    MATH  Google Scholar 

  • Pobedrya, B.E.: Mechanics of Composite Materials. MGU, Moscow (1984) (in Russian)

    MATH  Google Scholar 

  • Rodríguez-Ramos, R., Otero, J.A., Cruz-González, O.L., Guinovart-Díaz, R., Bravo-Castillero, J., Sabina, F.J., Padilla, P., Lebon, F., Sevostianov, I.: Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method. Int. J. Solids Struct. 190, 281–290 (2020)

    Google Scholar 

  • Smyshlyaev, V.P., Cherednichenko, K.: On rigorous derivation of strain gradient effects in the overall behavior of periodic heterogeneous media. J. Mech. Phys. Solids 48(6), 1325–1357 (2000)

    MathSciNet  MATH  Google Scholar 

  • Sobolev, S.L., Vaskevich, L.: The Theory of Cubature Formulas. Mathematics and Its Applications. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  • Stein, E.M., Shakarchi, R.: Complex Analysis. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  • Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, third ed. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  • Tran, A., Yvonnet, J., He, Q.-C., Toulemonde, C., Sanahuja, J.: A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials. Comput. Methods Appl. Mech. Eng. 200(45–46), 2956–2970 (2011)

    MathSciNet  MATH  Google Scholar 

  • Vlasov, A.N., Volkov-Bogorodsky, D.B.: Method of asymptotic homogenization of thermoviscoelasticity equations in parametric space. (Part I). Compos., Mech. Comput. Appl. Int. J. 201, 9(4), 331–343 (2018)

    Google Scholar 

  • Vlasov, A.N., Merzlyakov, V.P.: Averaging of Deformation and Strength Properties in Rock Mechanics. ASV, Moscow (2009) (in Russian)

    Google Scholar 

  • Vlasov, A.N., Volkov-Bogorodsky, D.B.: Application of the asymptotic homogenization in a parametric space to the modeling of structurally heterogeneous materials. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.113191

    Article  MATH  Google Scholar 

  • Vlasov, A.N., Volkov-Bogorodskii, D.B., Kornev, Yu.V.: Influence of carbon additives on mechanical characteristics of an epoxy binder. Mech. Solids 55(3), 577–586 (2020)

    Google Scholar 

  • Vlasov, A.N., Volkov-Bogorodsky, D.B.: Parametric method of asymptotic averaging for nonlinear equations of thermoelasticity. Mekh. Kompoz. Mather. Konstr. 20(4), 491–507 (2014) (in Russian)

    Google Scholar 

  • Volkov-Bogorodsky, D.B.: Radial multipliers method in mechanics of inhomogeneous media with multi-layered inclusions. Meh. Kompoz. Mater. Konstr. 22(1), 19–39 (2016) (in Russian)

    MathSciNet  Google Scholar 

  • Yu, Q., Fish, J.: Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int. J. Solids Struct. 39(26), 6429–6452 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the work. All authors revised the submission and approved the revised submission.

Corresponding author

Correspondence to V. L. Savatorova.

Ethics declarations

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical declaration

The manuscript has not been submitted or published elsewhere.

Ethics approval

Not applicable.

Our study does not involve human subjects and/or animals, so, no ethical approval in this regard is relevant to our study.

Consent to participate

Not applicable. In our study there were no participants to ask the consent from.

Consent for publication

Not applicable. In our study there were no participants to ask the consent from.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The harmonic potentials in the representation Eq. (34) can be approximated with the system of complex functions \(\Phi (P)\), determined by a formal series with two arbitrary analytical functions: a complex function \(\psi _{0}(w)\), \(w = x + i y\), and a real valued function \(U_{0}(z)\):

$$ \Phi (P) = \sum _{p} \frac{( - 1)^{p}\bar{w}^{p}}{4^{p} p!}\psi _{0}^{( - p)}(w) U_{0}^{(2p)}(z),\qquad \nabla ^{2}\Phi = 0, $$
(48)

where the \(\psi _{0}^{( - p - 1)}\) denote the antiderivatives \(\int \psi _{0}^{( - p)} dw\) and \(\psi _{0}^{(0)} = \psi _{0}(w)\).

Complex function \(\Phi (P)\) in its serial representation Eq. (48) satisfies the harmonic equation \(\nabla ^{2}\Phi = 0\). In the case when \(U_{0}(z)\) has a polynomial form, the series (48) has a finite representation. If we choose \(\psi _{0}(w) = w^{m}\) and \(U_{0}(z) = z^{n - m}\), then the series (48) becomes a system of homogeneous harmonic polynomials \(\Phi _{n}^{m} (P)\) used as basis functions for the generalized Eshelby problem approximating our solution. Here \(n\) is the general degree of the polynomial and \(m\) is its “angular” degree, i.e. the number of oscillations along the coordinate \(\varphi = \arctan (y / x)\). The system of functions \(\left \{ \Phi _{n}^{m} (P) \right \} \), \(m \le n\) forms a complete system needed to approximate an arbitrary regular harmonic function. Along with the regular system \(\left \{ \Phi _{n}^{m} (P) \right \} \), we define an additional singular system of harmonic functions \(\left \{ \hat{\Phi }_{n}^{m}(P) \right \} \) corresponding to functions \(\psi _{0}(w) = w^{m}\) and \(U_{0}(z) = z^{ - n - 1 - m}\). Defining the system \(\left \{ \hat{\Phi }_{n}^{m}(P) \right \} \) in serial form (48) can raise concerns about the convergence of the series, however, it can be defined in an equivalent form with singular multiplier \(r^{ - n - 1}\) and harmonic polynomial \(\Phi _{n}^{m}\) if we use a Kelvin transformation (Sobolev and Vaskevich 1997) for the spherical functions: \(\hat{\Phi }_{n}^{m} (P) = r^{ - n - 1} \Phi _{n}^{m} (P)\).

The form of auxiliary potential \(\boldsymbol{f}\) that ensures the solution of contact equations for quantities in Eq. (34), Eq. (35) in algebraic form is established by representing the fundamental solutions of Laplace equation in the form of products of radial multipliers \(h_{n}(r)\) and homogeneous harmonic polynomials \(\boldsymbol{\psi }_{n}(P)\), as well as using the Gauss theorem on the expansion for homogeneous polynomials \(\boldsymbol{\phi }_{n}(P)\) in a series in harmonic polynomials (Sobolev and Vaskevich 1997):

$$ \boldsymbol{\phi }_{n}(P) = \sum _{k = 0}^{\left [ n / 2 \right ]} r^{2k}\boldsymbol{\psi }_{n - 2k}(P),\qquad \nabla ^{2}\boldsymbol{\psi }_{n - 2k}(P) = 0. $$
(49)

For a biharmonic function, such as a displacement or a stress, series (49) contains two terms. The function at the free term \(\boldsymbol{\psi }_{n}\) can be calculated explicitly:

$$ \Psi _{n} = \sum _{k} \beta _{k} r^{2k} \nabla ^{2k} \phi _{n},\quad \beta _{k} =- {\beta _{k-1}} / {\left ( 2k \left ( 2n+1-2k \right ) \right ),\ \beta _{0} =1}. $$
(50)

Let \(G_{I}\) represent an inclusion, \(G_{M}\) represent matrix, and \(G_{j}\) represent the \(j\)th intermediate layer (there can be arbitrary number of intermediate layers). We determine the potentials in the subdomains \(G_{I}\), \(G_{j}\), \(G_{M}\) as products of radial multipliers and harmonic polynomial functions \(\boldsymbol{f}_{n}^{(0)}\). When we substitute the potentials written in this form into Eq. (34), Eq. (35), the products of radial multipliers and harmonic polynomials take the form of the sum of two terms, one of which contains a homogeneous polynomial. To satisfy the contact conditions on the interface, we introduce the function \(h(r)\) and obtain the differential relations

$$ \operatorname{div}\left ( h \boldsymbol{f} \right ) = h\operatorname{div} \boldsymbol{f} + \frac{h\,\prime}{r}\left ( \boldsymbol{r} \boldsymbol{f} \right ),\qquad \nabla \left ( h \boldsymbol{r} \boldsymbol{f} \right ) = h\nabla \left ( \boldsymbol{r} \boldsymbol{f} \right ) + \frac{h\,\prime}{r}\boldsymbol{r}\left ( \boldsymbol{r} \boldsymbol{f} \right ). $$
(51)

Using Eq. (49), Eq. (50) to analyze the homogeneous polynomials obtained in Eq. (51), we find that only five basic harmonic polynomials appear in the contact equations (see also Vlasov and Volkov-Bogorodsky 2020):

$$ \boldsymbol{\psi }_{0} = \nabla \operatorname{div} \boldsymbol{f}_{\boldsymbol{n}}^{(\boldsymbol{0})},\qquad \boldsymbol{\psi }_{1} = \boldsymbol{f}_{\boldsymbol{n}}^{(\boldsymbol{0})},\qquad \boldsymbol{\psi }_{2} =- \left ( h_{n} (r) \right )^{-1} \nabla \left ( h_{n-1} \left ( r \right ) \operatorname{div} \boldsymbol{f}_{n}^{(0)} \right ), $$
$$ \boldsymbol{\psi }_{3} = \left ( h_{n} (r) \right )^{-1} \left [ \nabla \left ( \boldsymbol{r} ( h_{n} \left ( r \right ) \boldsymbol{f}_{n}^{\left ( 0 \right )} ) \right ) - \boldsymbol{r} \operatorname{div} \left ( h_{n} (r) \boldsymbol{f}_{\boldsymbol{n}}^{(\boldsymbol{0})} \right ) \right ], $$
$$ \boldsymbol{\psi }_{4} = \left ( h_{n+2} \left ( r \right ) \right )^{-1} \nabla \operatorname{div} \left ( h_{n} \left ( r \right ) \boldsymbol{f}_{n}^{(0)} \right ), $$

where \(h_{n} \left ( r \right ) = r^{-2n-1}\) is a radial multiplier in three-dimensional space.

Thus, we have five harmonic polynomials and ten potentials, which are formed of these polynomials using singular radial multipliers \(h_{n}\). As a result, any of Eq. (34), Eq. (35) (which we denote \(\boldsymbol{F}\)) can be represented in the form of linear combinations of these polynomials with radial multipliers \(h_{0}\), \(h_{1}\), \(h_{2}\), \(h_{3}\), \(h_{4}\), which become constants on the contact surface having the shape of a sphere:

$$ \boldsymbol{F} = h_{0} r^{2} \nabla \operatorname{div} \boldsymbol{f}_{n}^{(0)} + h_{1} \boldsymbol{f}_{n}^{(0)} + h_{2} \nabla \left ( \boldsymbol{r f}_{n}^{(0)} \right ) + h_{3} \boldsymbol{r} \operatorname{div} \boldsymbol{f}_{n}^{(0)} + h_{4} r^{-2} \boldsymbol{r} \left ( \boldsymbol{r f}_{n}^{(0)} \right ). $$
(36)

In accordance with the structure of polynomials \(\boldsymbol{\psi }_{\boldsymbol{0}}\), \(\boldsymbol{\psi }_{\boldsymbol{1}}\), \(\boldsymbol{\psi }_{\boldsymbol{2}}\), \(\boldsymbol{\psi }_{\boldsymbol{3}}\), \(\boldsymbol{\psi }_{\boldsymbol{4}}\), defined using the harmonic polynomial \(\boldsymbol{f}_{n}^{(0)}\), the general form of the potential in representation (34) has the form

$$ \textstyle\begin{array}{l} \boldsymbol{f} = \left ( A_{j} + \hat{A}_{j}r^{ - 2n - 1} \right )\boldsymbol{f}_{n}^{(0)} + \left ( B_{j}r^{2n + 1} + \hat{B}_{j} \right )\nabla \left ( r^{ - 2n + 1}\operatorname{div} \boldsymbol{f}_{n}^{(0)} \right ) + \\ \quad \quad \quad + \left ( C_{j}r^{2n + 1} + \hat{C}_{j} \right )\left [ \nabla \left ( r^{ - 2n - 1}(\boldsymbol{r} \boldsymbol{f}_{n}^{(0)}) \right ) - \boldsymbol{r}\operatorname{div} \left ( r^{ - 2n - 1}\boldsymbol{f}_{n}^{(0)} \right ) \right ] + \\ \quad \quad \quad \quad \quad \quad + \left ( D_{j}r^{2n + 5} + \hat{D}_{j} \right )\nabla \operatorname{div} \left ( r^{ - 2n - 1}\boldsymbol{f}_{n}^{(0)} \right ) + \left ( E_{j} + \hat{E}_{j}r^{ - 2n + 3} \right )\nabla \operatorname{div} \boldsymbol{f}_{n}^{(0)}. \end{array} $$
(37)

Here \(A_{j}\), \(\hat{A}_{j}\), \(B_{j}\), \(\hat{B}_{j}\), \(C_{j}\), \(\hat{C}_{j}\), \(D_{j}\), \(\hat{D}_{j}\), \(E_{j}\), \(\hat{E}_{j}\), are free degrees of freedom, that is, the coefficients we need to define for each component of the composite material.

Since any homogeneous harmonic polynomial \(\boldsymbol{f}_{n}^{(0)}\) can be represented as a linear combination of functions \(\Phi _{n}^{m} (P)\) defined in Eq. (48), we can consider Eq. (37) as an exact approximation of the potential from representation (34) by regular and singular systems of harmonic functions \(\left \{ \Phi _{n - 2}^{m}, \Phi _{n}^{m}, \Phi _{n + 2}^{m} \right \} \) and \(\left \{ \hat{\Phi }_{n - 2}^{m}, \hat{\Phi }_{n}^{m}, \hat{\Phi }_{n + 2}^{m} \right \} \) of degree \(n - 2\), \(n\) and \(n + 2\) (the degree \(n - 2\) does not exist if \(n = 0,1\)).

\(x\)::

“Slow” coordinate

\(\xi \)::

“Fast” coordinate

\(\varepsilon \)::

Characteristic distance between inclusions

\(L\)::

Characteristic spatial size

\(T\)::

Temperature

\(t\)::

Time

\(r\)::

Spherical radial coordinate

\(s\)::

Parameter of Laplace transform

\(\boldsymbol{p} = \left \{ x,T,s \right \} \)::

Set of parameters

\(\boldsymbol{u}\)::

Displacement

\(\boldsymbol{u}^{*}\)::

Laplace image of displacement

\(I\)::

Identity matrix

\(A_{ij} \left ( \xi ,x,T,t \right ) = \left \Vert c_{ikjl} \right \Vert \)::

Time-dependent relaxation matrix functions

\(A_{ij}^{o} = A_{ij} (\xi ,x,T,0)\)::

Time-dependent relaxation matrix functions at initial moment of time

\(c_{ijkl}^{*}\)::

Laplace image of \(c_{ikjl}\)

\(\tilde{c}_{ijkl} = sc_{ijkl}^{*}\)::

See Eq. (13) in the text of the article

\(\hat{A}_{ij} = \left \Vert \hat{c}_{ikjl} \right \Vert = \left \Vert s \hat{c}_{ikjl}^{*} \right \Vert \)::

An effective matrix

\(\boldsymbol{\alpha }_{i} = \left \Vert \alpha _{ij} \right \Vert \)::

Vectors representing the thermal expansion tensor

\(\boldsymbol{\alpha }_{i}^{*}\)::

Laplace image of \(\boldsymbol{\alpha }_{i}\)

\(\hat{\boldsymbol{\alpha }}_{i}^{*} = \left \Vert \hat{\alpha }_{ij}^{*} \right \Vert \)::

Vectors determined by the components of the effective thermal expansion tensor

\(\hat{\boldsymbol{b}}_{\boldsymbol{i}} = \hat{A}_{ij} \hat{\boldsymbol{\alpha }}_{j}^{*}\)::

See Eq. (27) in the text of the article

\(\boldsymbol{n}\)::

Normal vector

\(\sigma _{ij}\)::

Stress tensor

\(\sigma _{ij}^{*}\)::

Laplace image of the stress tensor

\(\varepsilon _{ij}\)::

Tensor of deformations

\(\varepsilon _{ij}^{*}\)::

Laplace image of the tensor of deformations

\(\mu \) and \(\lambda \)::

Relaxation functions analogous to Lame parameters

\(\mu ^{*}\)::

Laplace image of \(\mu \)

\(\tilde{\mu } \left ( \xi ,x,T,s \right ) =s \mu ^{*} \left ( \xi ,x,T,s \right )\)::

See Eq. (15) in the text of the article

\(K_{0}\)::

Elastic modulus of the volumetric expansion

\(\tilde{K}\)::

Complex modulus of the volumetric expansion

\(\alpha \)::

Linear coefficient of thermal expansion

\(\alpha ^{*}\)::

Laplace image of \(\alpha \)

\(\delta _{ij}\)::

Kronecker delta

\(\sigma _{0}\)::

First invariant of the stress tensor

\(\sigma _{0}^{*}\)::

Laplace image of \(\sigma _{0}\)

\(\theta \)::

Volumetric deformation

\(E \left ( \xi ,x,T,t \right )\)::

An analog for Young’s modulus for viscoelastic material

\(E_{0}^{(i)} \left ( T \right )\) and \(\mu _{0}^{(i )} \left ( T \right )\)::

Instant elasticity and shear moduli

\(E_{\infty }^{(i)} \left ( T \right ) \ a \mathrm{nd} \ \mu _{\infty }^{(i )} \left ( T \right )\)::

Long-term elasticity and shear moduli

\(\gamma _{p}^{(i)}\)::

Inverse relaxation times

\(\nu _{ij}^{*}\)::

Viscoelastic analogs of Poisson’s ratios

\(\hat{G}_{ij}^{*}\)::

Viscoelastic analog of shear modulus

\(\hat{E}_{i}^{*}\)::

Viscoelastic analog of Young’s modulus

\(\hat{C}_{ij}^{*} = \hat{c}_{iijj}^{*}\)::

The image of stiffness matrix

\(\hat{c}_{ijkl}^{*} (x,T,s)= \hat{c}_{ijkl} (x,T,s) /s\)::

See the text of the article

\(\hat{R}_{ij}^{*} = \hat{r}_{iijj}^{*}\)::

Compliance matrix

\(\Delta _{i}\)::

Distance between the opposite faces \(S_{i}^{+}\) and \(S_{i}^{-}\) of a periodic cell (\(i=1,2,3\))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, A.N., Volkov-Bogorodsky, D.B. & Savatorova, V.L. Calculation of the effective properties of thermo-viscoelastic composites using asymptotic homogenization in parametric space. Mech Time-Depend Mater 26, 565–591 (2022). https://doi.org/10.1007/s11043-021-09501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09501-4

Keywords

Navigation