Skip to main content

Advertisement

Log in

Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Trimethylamine (TMA) is a gut microbiota-derived metabolite which comes from diets rich of choline, betaine or l-carnitine and could be further converted to Trimethylamine-N-oxide (TMAO) in the liver. As the function of gut microbiota and its metabolites being explored so far, studies suggest that TMAO may be a potential risk factor of cardiovascular diseases independent of other traditional risk factors. However, the precise role of TMAO is controversial as some converse results were discovered. In recent studies, it is hypothesized that TMA may also participate in the progression of cardiovascular diseases and some cytotoxic effect of TMA has been discovered. Thus, exploring the relationship between TMA, TMAO and CVD may bring a novel insight into the diagnosis and therapy of cardiovascular diseases. In this review, we discussed the factors which influence the TMA/TMAO’s process of metabolism in the human body. We have also summarized the pathogenic effect of TMA/TMAO in cardiovascular diseases, as well as the limitation of some controversial discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2

Similar content being viewed by others

Abbreviations

TMA:

Trimethylamine

TMAO:

Trimethylamine-N-oxide

AS:

Atherosclerosis

DMB:

3, 3-Dimethyl-1butanol

NLRP3:

Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3

γBB:

γ-Butyrobetaine

PERK:

Protein kinase R-like endoplasmic reticulum kinase

SR-A:

Scavenger receptor-A

MAPK:

Mitogen-activated protein kinase

JNK:

C-JUN NH2-terminal protein kinase

NF-κB:

Nuclear factor kappa B

CD36:

Cluster of differentiation 36

HSP:

Heat shock protein

GRP:

Glucose-related protein

TXNIP:

Thioredoxin-interactive protein

ROS:

Reactive oxygen species

HMGB1:

High mobility group box 1

TNF-α:

Tumor necrosis factor α

IL-6:

Interleukin 6

VCAM-1:

Vascular cell adhesion molecule 1

PKC:

Protein kinase C

SIRT3:

Sirtuin 3

SOD2:

Superoxide dismutase 2

ERS:

Endoplasmic reticulum stress

References

  1. Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165, 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  2. Bu, F., Zhang, S., Duan, Z., Ding, Y., Chen, T., Wang, R., Feng, Z., Shi, G., Zhou, J., & Chen, Y. (2020). A critical review on the relationship of herbal medicine, Akkermansia muciniphila, and human health. Biomedicine & Pharmacotherapy, 128, 110352. https://doi.org/10.1016/j.biopha.2020.110352

    Article  CAS  Google Scholar 

  3. Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World Journal of Gastroenterology, 13, 2826–2832. https://doi.org/10.3748/wjg.v13.i20.2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heianza, Y., Ma, W., Manson, J. E., Rexrode, K. M., & Qi, L. (2017). Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: A systematic review and meta-analysis of prospective studies. Journal of the American Heart Association. https://doi.org/10.1161/jaha.116.004947

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moludi, J., Maleki, V., Jafari-Vayghyan, H., Vaghef-Mehrabany, E., & Alizadeh, M. (2020). Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics. Clinical and Experimental Pharmacology and Physiology, 47, 927–939. https://doi.org/10.1111/1440-1681.13250

    Article  CAS  PubMed  Google Scholar 

  6. Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., Britt, E. B., Fu, X., Wu, Y., Li, L., Smith, J. D., DiDonato, J. A., Chen, J., Li, H., Wu, G. D., Lewis, J. D., Warrier, M., Brown, J. M., Krauss, R. M., … Hazen, S. L. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Natural Medicines, 19, 576–585. https://doi.org/10.1038/nm.3145

    Article  CAS  Google Scholar 

  7. Ufnal, M., & Nowiński, A. (2019). Is increased plasma TMAO a compensatory response to hydrostatic and osmotic stress in cardiovascular diseases? Medical Hypotheses, 130, 109271. https://doi.org/10.1016/j.mehy.2019.109271

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y. M., Wu, Y., Schauer, P., Smith, J. D., Allayee, H., Tang, W. H., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papandreou, C., Moré, M., & Bellamine, A. (2020). Trimethylamine N-oxide in relation to cardiometabolic health-cause or effect? Nutrients. https://doi.org/10.3390/nu12051330

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roberts, A. B., Gu, X., Buffa, J. A., Hurd, A. G., Wang, Z., Zhu, W., Gupta, N., Skye, S. M., Cody, D. B., Levison, B. S., Barrington, W. T., Russell, M. W., Reed, J. M., Duzan, A., Lang, J. M., Fu, X., Li, L., Myers, A. J., Rachakonda, S., … Hazen, S. L. (2018). Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Natural Medicines, 24, 1407–1417. https://doi.org/10.1038/s41591-018-0128-1

    Article  CAS  Google Scholar 

  11. Tang, W. H. W., Backhed, F., Landmesser, U., & Hazen, S. L. (2019). Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 2089–2105. https://doi.org/10.1016/j.jacc.2019.03.024

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu, Y., Jameson, E., Crosatti, M., Schäfer, H., Rajakumar, K., Bugg, T. D., & Chen, Y. (2014). Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proceedings of the National Academy of Sciences of the United States of America, 111, 4268–4273. https://doi.org/10.1073/pnas.1316569111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jie, Z., Xia, H., Zhong, S. L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., Gao, Y., Zhao, H., Zhang, D., Su, Z., Fang, Z., Lan, Z., Li, J., Xiao, L., Li, J., Li, R., Li, X., … Kristiansen, K. (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8, 845. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koeth, R. A., Levison, B. S., Culley, M. K., Buffa, J. A., Wang, Z., Gregory, J. C., Org, E., Wu, Y., Li, L., Smith, J. D., Tang, W. H. W., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2014). γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO. Cell Metabolism, 20, 799–812. https://doi.org/10.1016/j.cmet.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin, J., Liao, S. X., He, Y., Wang, S., Xia, G. H., Liu, F. T., Zhu, J. J., You, C., Chen, Q., Zhou, L., Pan, S. Y., & Zhou, H. W. (2015). Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.115.002699

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu, K. Y., Xia, G. H., Lu, J. Q., Chen, M. X., Zhen, X., Wang, S., You, C., Nie, J., Zhou, H. W., & Yin, J. (2017). Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Science and Reports, 7, 1445. https://doi.org/10.1038/s41598-017-01387-y

    Article  CAS  Google Scholar 

  17. Romano, K. A., Vivas, E. I., Amador-Noguez, D., & Rey, F. E. (2015). Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio. https://doi.org/10.1128/mBio.02481-14

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jaworska, K., Huc, T., Samborowska, E., Dobrowolski, L., Bielinska, K., Gawlak, M., & Ufnal, M. (2017). Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS ONE, 12, e0189310. https://doi.org/10.1371/journal.pone.0189310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ufnal, M., Zadlo, A., & Ostaszewski, R. (2015). TMAO: A small molecule of great expectations. Nutrition, 31, 1317–1323. https://doi.org/10.1016/j.nut.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  20. Koeth, R. A., Lam-Galvez, B. R., Kirsop, J., Wang, Z., Levison, B. S., Gu, X., Copeland, M. F., Bartlett, D., Cody, D. B., Dai, H. J., Culley, M. K., Li, X. S., Fu, X., Wu, Y., Li, L., DiDonato, J. A., Tang, W. H. W., Garcia-Garcia, J. C., & Hazen, S. L. (2019). l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. Journal of Clinical Investigation, 129, 373–387. https://doi.org/10.1172/jci94601

    Article  Google Scholar 

  21. Lopez-Garcia, E., Rodriguez-Artalejo, F., Li, T. Y., Fung, T. T., Li, S., Willett, W. C., Rimm, E. B., & Hu, F. B. (2014). The Mediterranean-style dietary pattern and mortality among men and women with cardiovascular disease. American Journal of Clinical Nutrition, 99, 172–180. https://doi.org/10.3945/ajcn.113.068106

    Article  CAS  Google Scholar 

  22. Griffin, L. E., Djuric, Z., Angiletta, C. J., Mitchell, C. M., Baugh, M. E., Davy, K. P., & Neilson, A. P. (2019). A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food & Function, 10, 2138–2147. https://doi.org/10.1039/c9fo00333a

    Article  CAS  Google Scholar 

  23. Zhu, W., Buffa, J. A., Wang, Z., Warrier, M., Schugar, R., Shih, D. M., Gupta, N., Gregory, J. C., Org, E., Fu, X., Li, L., DiDonato, J. A., Lusis, A. J., Brown, J. M., & Hazen, S. L. (2018). Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. Journal of Thrombosis and Haemostasis, 16, 1857–1872. https://doi.org/10.1111/jth.14234

    Article  CAS  PubMed  Google Scholar 

  24. Miao, J., Ling, A. V., Manthena, P. V., Gearing, M. E., Graham, M. J., Crooke, R. M., Croce, K. J., Esquejo, R. M., Clish, C. B., Vicent, D., & Biddinger, S. B. (2015). Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nature Communications, 6, 6498. https://doi.org/10.1038/ncomms7498

    Article  CAS  PubMed  Google Scholar 

  25. Bennett, B. J., de Aguiar Vallim, T. Q., Wang, Z., Shih, D. M., Meng, Y., Gregory, J., Allayee, H., Lee, R., Graham, M., Crooke, R., Edwards, P. A., Hazen, S. L., & Lusis, A. J. (2013). Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metabolism, 17, 49–60. https://doi.org/10.1016/j.cmet.2012.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welch, W. J., & Brown, C. R. (1996). Influence of molecular and chemical chaperones on protein folding. Cell Stress & Chaperones, 1, 109–115. https://doi.org/10.1379/1466-1268(1996)001

    Article  CAS  Google Scholar 

  27. Ma, J., & Li, H. (2018). The Role of gut microbiota in atherosclerosis and hypertension. Frontiers in Pharmacology, 9, 1082. https://doi.org/10.3389/fphar.2018.01082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ge, X., Zheng, L., Zhuang, R., Yu, P., Xu, Z., Liu, G., Xi, X., Zhou, X., & Fan, H. (2020). The gut microbial metabolite trimethylamine n-oxide and hypertension risk: a systematic review and dose-response meta-analysis. Advances in Nutrition, 11, 66–76. https://doi.org/10.1093/advances/nmz064

    Article  PubMed  Google Scholar 

  29. Zhang, W. Q., Wang, Y. J., Zhang, A., Ding, Y. J., Zhang, X. N., Jia, Q. J., Zhu, Y. P., Li, Y. Y., Lv, S. C., & Zhang, J. P. (2021). TMA/TMAO in hypertension: novel horizons and potential therapies. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-021-10115-x

    Article  PubMed  Google Scholar 

  30. Ferrario, C. M. (2006). Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. Journal of the Renin Angiotensin Aldosterone System, 7, 3–14. https://doi.org/10.3317/jraas.2006.003

    Article  CAS  PubMed  Google Scholar 

  31. Karbach, S. H., Schonfelder, T., Brandao, I., Wilms, E., Hormann, N., Jackel, S., Schuler, R., Finger, S., Knorr, M., Lagrange, J., Brandt, M., Waisman, A., Kossmann, S., Schafer, K., Munzel, T., Reinhardt, C., & Wenzel, P. (2016). Gut microbiota promote angiotensin ii-induced arterial hypertension and vascular dysfunction. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.116.003698

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ufnal, M., Jazwiec, R., Dadlez, M., Drapala, A., Sikora, M., & Skrzypecki, J. (2014). Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Canadian Journal of Cardiology, 30, 1700–1705. https://doi.org/10.1016/j.cjca.2014.09.010

    Article  Google Scholar 

  33. Madhur, M. S., Lob, H. E., McCann, L. A., Iwakura, Y., Blinder, Y., Guzik, T. J., & Harrison, D. G. (2010). Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension, 55, 500–507. https://doi.org/10.1161/hypertensionaha.109.145094

    Article  CAS  PubMed  Google Scholar 

  34. Chen, M. L., Zhu, X. H., Ran, L., Lang, H. D., Yi, L., & Mi, M. T. (2017). Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Journal of the American Heart Association. https://doi.org/10.1161/jaha.117.006347

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shaw, M. H., Kamada, N., Kim, Y. G., & Nunez, G. (2012). Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. Journal of Experimental Medicine, 209, 251–258. https://doi.org/10.1084/jem.20111703

    Article  CAS  Google Scholar 

  36. Boini, K. M., Hussain, T., Li, P. L., & Koka, S. (2017). Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cellular Physiology and Biochemistry, 44, 152–162. https://doi.org/10.1159/000484623

    Article  PubMed  Google Scholar 

  37. Dannenberg, L., Zikeli, D., Benkhoff, M., Ahlbrecht, S., Kelm, M., Levkau, B., & Polzin, A. (2020). Targeting the human microbiome and its metabolite TMAO in cardiovascular prevention and therapy. Pharmacology & Therapeutics. https://doi.org/10.1016/j.pharmthera.2020.107584

    Article  Google Scholar 

  38. Chen, H., Li, J., Li, N., Liu, H., & Tang, J. (2019). Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia. Hypertension in Pregnancy., 38, 96–104. https://doi.org/10.1080/10641955.2019.1584630

    Article  CAS  PubMed  Google Scholar 

  39. Hsu, C. N., Chang-Chien, G. P., Lin, S., Hou, C. Y., & Tain, Y. L. (2019). Targeting on gut microbial metabolite trimethylamine-N-oxide and short-chain fatty acid to prevent maternal high-fructose-diet-induced developmental programming of hypertension in adult male offspring. Molecular Nutrition & Food Research, 63, e1900073. https://doi.org/10.1002/mnfr.201900073

    Article  CAS  Google Scholar 

  40. Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208, 2819–2830. https://doi.org/10.1242/jeb.01730

    Article  CAS  Google Scholar 

  41. Huc, T., Drapala, A., Gawrys, M., Konop, M., Bielinska, K., Zaorska, E., Samborowska, E., Wyczalkowska-Tomasik, A., Paczek, L., Dadlez, M., & Ufnal, M. (2018). Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. American Journal of Physiology:Heart and Circulatory Physiology, 315, H1805–H1820. https://doi.org/10.1152/ajpheart.00536.2018

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Z., Roberts, A. B., Buffa, J. A., Levison, B. S., Zhu, W., Org, E., Gu, X., Huang, Y., Zamanian-Daryoush, M., Culley, M. K., DiDonato, A. J., Fu, X., Hazen, J. E., Krajcik, D., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2015). Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 163, 1585–1595. https://doi.org/10.1016/j.cell.2015.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, X., Geng, J., Zhao, J., Ni, Q., Zhao, C., Zheng, Y., Chen, X., & Wang, L. (2019). Trimethylamine N-oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome. Frontiers in Physiology., 10, 866. https://doi.org/10.3389/fphys.2019.00866

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun, X., Jiao, X., Ma, Y., Liu, Y., Zhang, L., He, Y., & Chen, Y. (2016). Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications, 481, 63–70. https://doi.org/10.1016/j.bbrc.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  45. Sho, T., & Xu, J. (2019). Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnology and Applied Biochemistry, 66, 4–13. https://doi.org/10.1002/bab.1700

    Article  CAS  PubMed  Google Scholar 

  46. Seldin, M. M., Meng, Y., Qi, H., Zhu, W., Wang, Z., Hazen, S. L., Lusis, A. J., & Shih, D. M. (2016). Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. Journal of the American Heart Association. https://doi.org/10.1161/jaha.115.002767

    Article  PubMed  PubMed Central  Google Scholar 

  47. Singh, G. B., Zhang, Y., Boini, K. M., & Koka, S. (2019). High mobility group box 1 mediates TMAO-induced endothelial dysfunction. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20143570

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ma, G., Pan, B., Chen, Y., Guo, C., Zhao, M., Zheng, L., & Chen, B. (2017). Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion. Bioscience Reports. https://doi.org/10.1042/bsr20160244

  49. Ke, Y., Li, D., Zhao, M., Liu, C., Liu, J., Zeng, A., Shi, X., Cheng, S., Pan, B., Zheng, L., & Hong, H. (2018). Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radical Biology & Medicine, 116, 88–100. https://doi.org/10.1016/j.freeradbiomed.2018.01.007

    Article  CAS  Google Scholar 

  50. Geng, J., Yang, C., Wang, B., Zhang, X., Hu, T., Gu, Y., & Li, J. (2018). Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomedicine & Pharmacotherapy, 97, 941–947. https://doi.org/10.1016/j.biopha.2017.11.016

    Article  CAS  Google Scholar 

  51. Mohammadi, A., Vahabzadeh, Z., Jamalzadeh, S., & Khalili, T. (2018). Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A.1 murine macrophages. Advances in Medical Sciences, 63, 57–63. https://doi.org/10.1016/j.advms.2017.06.006

    Article  PubMed  Google Scholar 

  52. Mohammadi, A., Gholamhoseyniannajar, A., Yaghoobi, M. M., Jahani, Y., & Vahabzadeh, Z. (2015). Expression levels of heat shock protein 60 and glucose-regulated protein 78 in response to trimethylamine-N-oxide treatment in murine macrophage J774A.1 cell line. Cellular and Molecular Biology (Noisy-Le-Grand), 61, 94–100

    CAS  Google Scholar 

  53. Yang, S., Li, X., Yang, F., Zhao, R., Pan, X., Liang, J., Tian, L., Li, X., Liu, L., Xing, Y., & Wu, M. (2019). Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Frontiers in Pharmacology, 10, 1360. https://doi.org/10.3389/fphar.2019.01360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ross, R., & Glomset, J. A. (1973). Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science, 180, 1332–1339. https://doi.org/10.1126/science.180.4093.1332

    Article  CAS  PubMed  Google Scholar 

  55. Charach, G., Rabinovich, P. D., Konikoff, F. M., Grosskopf, I., Weintraub, M. S., & Gilat, T. (1998). Decreased fecal bile acid output in patients with coronary atherosclerosis. Journal of Medicine, 29, 125–136

    CAS  PubMed  Google Scholar 

  56. Ross, R. (1999). Atherosclerosis–an inflammatory disease. New England Journal of Medicine, 340, 115–126. https://doi.org/10.1056/nejm199901143400207

    Article  CAS  Google Scholar 

  57. Liu, X., Xie, Z., Sun, M., Wang, X., Li, J., Cui, J., Zhang, F., Yin, L., Huang, D., Hou, J., Tian, J., & Yu, B. (2018). Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography. International Journal of Cardiology, 265, 18–23. https://doi.org/10.1016/j.ijcard.2018.04.126

    Article  PubMed  Google Scholar 

  58. Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R. B., McIntyre, T. M., Silverstein, R. L., Tang, W. H. W., DiDonato, J. A., Brown, J. M., Lusis, A. J., & Hazen, S. L. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165, 111–124. https://doi.org/10.1016/j.cell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haissman, J. M., Haugaard, A. K., Ostrowski, S. R., Berge, R. K., Hov, J. R., Trøseid, M., & Nielsen, S. D. (2017). Microbiota-dependent metabolite and cardiovascular disease marker trimethylamine-N-oxide (TMAO) is associated with monocyte activation but not platelet function in untreated HIV infection. BMC Infectious Diseases, 17, 445. https://doi.org/10.1186/s12879-017-2547-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nam, H. S. (2019). Gut microbiota and ischemic stroke: The role of trimethylamine N-oxide. Journal of Stroke, 21, 151–159. https://doi.org/10.5853/jos.2019.00472

    Article  PubMed  PubMed Central  Google Scholar 

  61. Farhangi, M. A., Vajdi, M., & Asghari-Jafarabadi, M. (2020). Gut microbiota-associated metabolite trimethylamine N-Oxide and the risk of stroke: a systematic review and dose-response meta-analysis. Nutrition Journal, 19, 76. https://doi.org/10.1186/s12937-020-00592-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Senthong, V., Wang, Z., Fan, Y., Wu, Y., Hazen, S. L., & Tang, W. H. (2016). Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. Journal of the American Heart Association. https://doi.org/10.1161/jaha.116.004237

    Article  PubMed  PubMed Central  Google Scholar 

  63. Randrianarisoa, E., Lehn-Stefan, A., Wang, X., Hoene, M., Peter, A., Heinzmann, S. S., Zhao, X., Königsrainer, I., Königsrainer, A., Balletshofer, B., Machann, J., Schick, F., Fritsche, A., Häring, H. U., Xu, G., Lehmann, R., & Stefan, N. (2016). Relationship of serum trimethylamine N-oxide (TMAO) levels with early atherosclerosis in humans. Science and Reports, 6, 26745. https://doi.org/10.1038/srep26745

    Article  CAS  Google Scholar 

  64. Tang, W. H., Wang, Z., Fan, Y., Levison, B., Hazen, J. E., Donahue, L. M., Wu, Y., & Hazen, S. L. (2014). Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. Journal of the American College of Cardiology, 64, 1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617

    Article  CAS  PubMed  Google Scholar 

  65. Dambrova, M., Latkovskis, G., Kuka, J., Strele, I., Konrade, I., Grinberga, S., Hartmane, D., Pugovics, O., Erglis, A., & Liepinsh, E. (2016). Diabetes is associated with higher trimethylamine N-oxide plasma levels. Experimental and Clinical Endocrinology and Diabetes, 124, 251–256. https://doi.org/10.1055/s-0035-1569330

    Article  CAS  PubMed  Google Scholar 

  66. Shan, Z., Sun, T., Huang, H., Chen, S., Chen, L., Luo, C., Yang, W., Yang, X., Yao, P., Cheng, J., Hu, F. B., & Liu, L. (2017). Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. American Journal of Clinical Nutrition, 106, 888–894. https://doi.org/10.3945/ajcn.117.157107

    Article  CAS  Google Scholar 

  67. Henning, R. J. (2018). Type-2 diabetes mellitus and cardiovascular disease. Future Cardiology, 14, 491–509. https://doi.org/10.2217/fca-2018-0045

    Article  CAS  PubMed  Google Scholar 

  68. Chen, S., Henderson, A., Petriello, M. C., Romano, K. A., Gearing, M., Miao, J., Schell, M., Sandoval-Espinola, W. J., Tao, J., Sha, B., Graham, M., Crooke, R., Kleinridders, A., Balskus, E. P., Rey, F. E., Morris, A. J., & Biddinger, S. B. (2019). Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metabolism, 30, 1141-1151.e1145. https://doi.org/10.1016/j.cmet.2019.08.021

    Article  CAS  PubMed  Google Scholar 

  69. Lupachyk, S., Watcho, P., Stavniichuk, R., Shevalye, H., & Obrosova, I. G. (2013). Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes, 62, 944–952. https://doi.org/10.2337/db12-0716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Senft, D., & Ronai, Z. A. (2015). UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends in Biochemical Sciences, 40, 141–148. https://doi.org/10.1016/j.tibs.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Papandreou, C., Bulló, M., Zheng, Y., Ruiz-Canela, M., Yu, E., Guasch-Ferré, M., Toledo, E., Clish, C., Corella, D., Estruch, R., Ros, E., Fitó, M., Arós, F., Fiol, M., Lapetra, J., Serra-Majem, L., Gómez-Gracia, E., Liang, L., Fragkiadakis, G. A., & Salas-Salvadó, J. (2018). Plasma trimethylamine-N-oxide and related metabolites are associated with type 2 diabetes risk in the Prevención con Dieta Mediterránea (PREDIMED) trial. American Journal of Clinical Nutrition, 108, 163–173. https://doi.org/10.1093/ajcn/nqy058

    Article  Google Scholar 

  72. Dumas, M. E., Rothwell, A. R., Hoyles, L., Aranias, T., Chilloux, J., Calderari, S., Noll, E. M., Péan, N., Boulangé, C. L., Blancher, C., Barton, R. H., Gu, Q., Fearnside, J. F., Deshayes, C., Hue, C., Scott, J., Nicholson, J. K., & Gauguier, D. (2017). Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Reports, 20, 136–148. https://doi.org/10.1016/j.celrep.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  73. Tang, W. H., Wang, Z., Shrestha, K., Borowski, A. G., Wu, Y., Troughton, R. W., Klein, A. L., & Hazen, S. L. (2015). Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. Journal of Cardiac Failure, 21, 91–96. https://doi.org/10.1016/j.cardfail.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  74. Trøseid, M., Ueland, T., Hov, J. R., Svardal, A., Gregersen, I., Dahl, C. P., Aakhus, S., Gude, E., Bjørndal, B., Halvorsen, B., Karlsen, T. H., Aukrust, P., Gullestad, L., Berge, R. K., & Yndestad, A. (2015). Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. Journal of Internal Medicine, 277, 717–726. https://doi.org/10.1111/joim.12328

    Article  CAS  PubMed  Google Scholar 

  75. Hayashi, T., Yamashita, T., Watanabe, H., Kami, K., Yoshida, N., Tabata, T., Emoto, T., Sasaki, N., Mizoguchi, T., Irino, Y., Toh, R., Shinohara, M., Okada, Y., Ogawa, W., Yamada, T., & Hirata, K. I. (2018). Gut Microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure. Circulation Journal, 83, 182–192. https://doi.org/10.1253/circj.CJ-18-0468

    Article  PubMed  Google Scholar 

  76. Organ, C. L., Otsuka, H., Bhushan, S., Wang, Z., Bradley, J., Trivedi, R., Polhemus, D. J., Tang, W. H., Wu, Y., Hazen, S. L., & Lefer, D. J. (2016). choline diet and its gut microbe-derived metabolite, trimethylamine N-Oxide, exacerbate pressure overload-induced heart failure. Circulation. Heart Failure, 9, e002314. https://doi.org/10.1161/circheartfailure.115.002314

    Article  CAS  PubMed  Google Scholar 

  77. Meng, G., Zhou, X., Wang, M., Zhou, L., Wang, Z., Wang, M., Deng, J., Wang, Y., Zhou, Z., Zhang, Y., Lai, Y., Zhang, Q., Yang, X., Yu, L., & Jiang, H. (2019). Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. eBioMedicine, 44, 656–664. https://doi.org/10.1016/j.ebiom.2019.03.066

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yu, L., Meng, G., Huang, B., Zhou, X., Stavrakis, S., Wang, M., Li, X., Zhou, L., Wang, Y., Wang, M., Wang, Z., Deng, J., Po, S. S., & Jiang, H. (2018). A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. International Journal of Cardiology, 255, 92–98. https://doi.org/10.1016/j.ijcard.2017.11.071

    Article  PubMed  Google Scholar 

  79. Jia, Q., Li, H., Zhou, H., Zhang, X., Zhang, A., Xie, Y., Li, Y., Lv, S., & Zhang, J. (2019). Role and effective therapeutic target of gut microbiota in heart failure. Cardiovascular Therapeutic, 2019, 5164298. https://doi.org/10.1155/2019/5164298

    Article  CAS  Google Scholar 

  80. Li, Z., Wu, Z., Yan, J., Liu, H., Liu, Q., Deng, Y., Ou, C., & Chen, M. (2019). Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Laboratory Investigation, 99, 346–357. https://doi.org/10.1038/s41374-018-0091-y

    Article  CAS  PubMed  Google Scholar 

  81. Chen, K., Zheng, X., Feng, M., Li, D., & Zhang, H. (2017). Gut Microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Frontiers in Physiology, 8, 139. https://doi.org/10.3389/fphys.2017.00139

    Article  PubMed  PubMed Central  Google Scholar 

  82. Savi, M., Bocchi, L., Bresciani, L., Falco, A., Quaini, F., Mena, P., Brighenti, F., Crozier, A., Stilli, D., & Del Rio, D. (2018). Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide. Molecules. https://doi.org/10.3390/molecules23030549

    Article  PubMed  PubMed Central  Google Scholar 

  83. Makrecka-Kuka, M., Volska, K., Antone, U., Vilskersts, R., Grinberga, S., Bandere, D., Liepinsh, E., & Dambrova, M. (2017). Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicology Letters, 267, 32–38. https://doi.org/10.1016/j.toxlet.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  84. Gawrys-Kopczynska, M., Konop, M., Maksymiuk, K., Kraszewska, K., Derzsi, L., Sozanski, K., Holyst, R., Pilz, M., Samborowska, E., Dobrowolski, L., Jaworska, K., Mogilnicka, I., & Ufnal, M. (2020). TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats. eLife. https://doi.org/10.7554/eLife.57028

    Article  PubMed  PubMed Central  Google Scholar 

  85. Querio, G., Antoniotti, S., Levi, R., & Gallo, M. P. (2019). Trimethylamine N-oxide does not impact viability, ros production, and mitochondrial membrane potential of adult rat cardiomyocytes. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20123045

    Article  PubMed  PubMed Central  Google Scholar 

  86. Albert, C. L., & Tang, W. H. W. (2018). Metabolic biomarkers in heart failure. Heart Failure Clinics, 14, 109–118. https://doi.org/10.1016/j.hfc.2017.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schiattarella, G.G., Sannino, A., Toscano, E., Giugliano, G., Gargiulo, G., Franzone, A., Trimarco, B., Esposito, G. and Perrino, C. (2017). Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. European Heart Journal 38:2948–2956. https://doi.org/10.1093/eurheartj/ehx342

  88. Li, X. S., Obeid, S., Klingenberg, R., Gencer, B., Mach, F., Raber, L., Windecker, S., Rodondi, N., Nanchen, D., Muller, O., Miranda, M. X., Matter, C. M., Wu, Y., Li, L., Wang, Z., Alamri, H. S., Gogonea, V., Chung, Y. M., Tang, W. H., … Luscher, T. F. (2017). Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. European Heart Journal, 38, 814–824. https://doi.org/10.1093/eurheartj/ehw582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suzuki, T., Heaney, L. M., Jones, D. J., & Ng, L. L. (2017). Trimethylamine N-oxide and risk stratification after acute myocardial infarction. Clinical Chemistry, 63, 420–428. https://doi.org/10.1373/clinchem.2016.264853

    Article  CAS  PubMed  Google Scholar 

  90. Jaworska, K., Bielinska, K., Gawrys-Kopczynska, M., & Ufnal, M. (2019). TMA (trimethylamine), but not its oxide TMAO (trimethylamine-oxide), exerts haemodynamic effects: implications for interpretation of cardiovascular actions of gut microbiome. Cardiovascular Research, 115, 1948–1949. https://doi.org/10.1093/cvr/cvz231

    Article  CAS  PubMed  Google Scholar 

  91. Jaworska, K., Hering, D., Mosieniak, G., Bielak-Zmijewska, A., Pilz, M., Konwerski, M., Gasecka, A., Kaplon-Cieslicka, A., Filipiak, K., Sikora, E., Holyst, R., & Ufnal, M. (2019). TMA, a forgotten uremic toxin, but not TMAO is involved in cardiovascular pathology. Toxins (Basel). https://doi.org/10.3390/toxins11090490

    Article  Google Scholar 

  92. Suska, A., Ibanez, A. B., Lundstrom, I., & Berghard, A. (2009). G protein-coupled receptor mediated trimethylamine sensing. Biosensors & Bioelectronics, 25, 715–720. https://doi.org/10.1016/j.bios.2009.08.012

    Article  CAS  Google Scholar 

  93. Chhibber-Goel, J., Gaur, A., Singhal, V., Parakh, N., Bhargava, B., & Sharma, A. (2016). The complex metabolism of trimethylamine in humans: endogenous and exogenous sources. Expert Reviews in Molecular Medicine, 18, e8. https://doi.org/10.1017/erm.2016.6

    Article  CAS  PubMed  Google Scholar 

  94. Jaworska, K., Konop, M., Hutsch, T., Perlejewski, K., Radkowski, M., Grochowska, M., Bielak-Zmijewska, A., Mosieniak, G., Sikora, E., & Ufnal, M. (2020). Trimethylamine But not trimethylamine oxide increases with age in rat plasma and affects smooth muscle cells viability. Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 75, 1276–1283. https://doi.org/10.1093/gerona/glz181

    Article  CAS  Google Scholar 

  95. Restini, C. B. A., Fink, G. D., & Watts, S. W. (2021). Vascular reactivity stimulated by TMA and TMAO: Are perivascular adipose tissue and endothelium involved? Pharmacological Research, 163, 105273. https://doi.org/10.1016/j.phrs.2020.105273

    Article  CAS  PubMed  Google Scholar 

  96. Gao, X., Liu, X., Xu, J., Xue, C., Xue, Y., & Wang, Y. (2014). Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. Journal of Bioscience and Bioengineering, 118, 476–481. https://doi.org/10.1016/j.jbiosc.2014.03.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 82070299, 81870221, 81670249 and 31271226 to Dr. Wei Jiang)

Funding

National Natural Science Foundation of China (Grant Nos. 82070299, 81870221, 81670249 and 31271226 to Dr. Wei Jiang).

Author information

Authors and Affiliations

Authors

Contributions

SH was responsible for the collection and arrangement of articles associated with TMA/TMAO and cardiovascular diseases, manuscript writing and revision. HJ was responsible for figures drawing and part of the manuscript writing. CZ was responsible for the organization and revision of the manuscript. WJ made important intellectual contribution in research design, technical guidance and manuscript revision.

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor as “Dipak K Dube”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Jiang, H., Zhuo, C. et al. Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases. Cardiovasc Toxicol 21, 593–604 (2021). https://doi.org/10.1007/s12012-021-09656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09656-z

Keywords

Navigation