Skip to main content

Advertisement

Log in

A proposed method for measurement of absolute air fluorescence yield based on high resolution optical emission spectroscopy

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a “standard candle”. The separation of these two radiations can be accomplished exploiting the “dark” spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these “dark” regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The proposed method and the associated instrumentation could be tested and used in thin or thick target experiments in electron beam accelerators as a candidate optical system for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Santa Barbara Instrument Group, 147-A Castilian Drive, Santa Barbara, CA 93117.

  2. 106 Waterhouse Lane, Chelmsford, Essex CM1 2QU, England.

References

  • Arqueros, F., Hörandel, J.R., Keilhauer, B.: Air fluorescence relevant for cosmic-ray detection—summary of the 5th fluorescence workshop, El. Escorial 2007. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 597, 1–22 (2008)

    Article  ADS  Google Scholar 

  • Ave, M., Bohacova, M., Buonomo, B., et al. (AIRFLY Collaboration): A novel method for the absolute fluorescence yield measurement by AIRFLY. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 597, 55–60 (2008a)

    Article  ADS  Google Scholar 

  • Ave, M., Bohacova, M., Buonomo, B., et al. (AIRFLY Collaboration): Energy dependence of air fluorescence yield measured by AIRFLY. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 597, 46–49 (2008b)

    Article  ADS  Google Scholar 

  • Ave, M., Bohacova, M., Buonomo, B., et al. (AIRFLY Collaboration): Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 597, 41–45 (2008c)

    Article  ADS  Google Scholar 

  • Ave, M., Bohacova, M., Daumillera, K., Di Carlod, P., et al. (AIRFLY Collaboration): Precise measurement of the absolute yield of fluorescence photons in atmospheric gases. Nucl. Phys. B, Proc. Suppl. 212–213, 356–361 (2011)

    Article  ADS  Google Scholar 

  • Ave, M., Bohacova, M., Curry, E., et al.: Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases. Astropart. Phys. 42, 90–102 (2013)

    Article  ADS  Google Scholar 

  • Belz, J.W., et al. (FLASH Collaboration): Measurement of pressure dependent fluorescence yield of air: calibration factor for UHECR detectors. Astropart. Phys. 25, 129–139 (2006)

    Article  ADS  Google Scholar 

  • Bernath, P.: Spectra of Atoms and Molecules, 2nd edn. p. 352. Oxford University Press, London (2005)

    Google Scholar 

  • Blanco, F., Arqueros, F.: The role of secondary electrons in some experiments determining fluorescence emission from nitrogen C\(^{3}\ \Pi _{\mathrm{u}}\) levels. Phys. Lett. A 345, 355–361 (2005)

    Article  ADS  Google Scholar 

  • Bunner, A.N.: Cosmic ray detection by atmospheric fluorescence. Ph.D. Thesis, Cornell University (1967)

  • Chelouah, A., Marode, E., Hartmann, G., Achat, S.: A new method for temperature evaluation in a nitrogen discharge. J. Phys. D, Appl. Phys. 27, 940–945 (1994)

    Article  ADS  Google Scholar 

  • Davidson, G., O’ Neil, R.: Optical radiation from nitrogen and air at high pressure excited by energetic electrons. J. Chem. Phys. 41(12), 3946 (1964)

    Article  ADS  Google Scholar 

  • Fokitis, E., Gika, V., Fetfatzis, P., et al.: Plasma source for the emulation of the atmospheric fluorescence produced by the secondaries of ultra high energy cosmic ray particles. High Temp. Mater. Process. 13(3), 323–328 (2009)

    Google Scholar 

  • Gardet, G., Moulard, G., Courbon, M., et al.: Evaluation of the rotational temperature in N2 discharges using low - resolution spectroscopy. Meas. Sci. Technol. 11, 333–341 (2000)

    Article  ADS  Google Scholar 

  • Keilhauer, B., Blumer, J., Engel, R., Klages, H.O.: Impact of varying atmospheric profiles on extensive air shower observation: fluorescence light emission and energy reconstruction. Astropart. Phys. 25, 259–268 (2006)

    Article  ADS  Google Scholar 

  • Kurunczi, P., Abramzon, N., Figus, M., Becker, K.: Rotational temperature measurements in high-pressure microhollow cathode (MHC) and capillary plasma electrode (CPE) discharges. Acta Phys. Slovaca 54, 115–124 (2004)

    Google Scholar 

  • Linss, V., Kupfer, H., Peter, S., Richter, F.: Determination of the neutral gas temperature of nitrogen-containing low-pressure plasmas using a two-temperature model. Surf. Coat. Technol. 200, 1696–1701 (2005)

    Article  Google Scholar 

  • Maltezos, S., Fokitis, E., Gika, V., et al.: Nitrogen molecular spectra of air-fluorescence emulator using LN2 cooled CCD. In: Leroy, C., Rancoita, P., Barone, M., Gaddi, A., et al. (eds.) ICATPP 2009, Como, Italy, pp. 253–258. World Scientific, Singapore (2010)

    Google Scholar 

  • Nassar, H., Pellerin, S., Musiol, K., et al.: N2+/N2 ratio and temperature measurements based on the first negative N2+ and second positive N2 overlapped molecular emission spectra. J. Phys. D, Appl. Phys. 37, 1904–1916 (2004)

    Article  ADS  Google Scholar 

  • Staack, D., Farouk, B., Gutsol, B.A., Fridman, A.A.: Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Sci. Technol. 15, 818–827 (2006)

    Article  Google Scholar 

  • Zhang, J., Liu, L., Ma, T., Deng, X.: Rotational temperature of nitrogen glow discharge obtained by optical emission spectroscopy. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 58, 1915–1922 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We have to thank the Dr. P. Fetfatzis and Dr. N. Maragos and as well the Ph. D student G. Koutelieris for their contribution for using the CCD sensor in LN2 temperatures. We kindly thank Professors K. Raptis and M. Makropoulou of NTUA for their support and useful discussions. We also thank Mrs. K. Holland and Professor A. Holland from XCAM for their general support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gika.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gika, V., Fokitis, E. & Maltezos, S. A proposed method for measurement of absolute air fluorescence yield based on high resolution optical emission spectroscopy. Astrophys Space Sci 366, 45 (2021). https://doi.org/10.1007/s10509-021-03951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-021-03951-5

Keywords

Navigation