Skip to main content
Log in

Synthesis and Physicochemical Properties of Nanostructured TiO2 with Enhanced Photocatalytic Activity

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanostructured titanium dioxide (TiO2) with a crystallite size from 10 to 85 nm, photocatalytically active for organic reactions under illumination with visible light, has been prepared by a sol–gel process using a titanium tetrabutoxide solution in ethanol with an initial pH of 6. According to X-ray diffraction characterization results, the as-prepared titanium dioxide was amorphous. Annealing in a hydrogen atmosphere for 1 h at 400°C led to the formation of an anatase phase, and annealing in the temperature range from 600 to 800°C resulted in the anatase–rutile phase transition. The crystallite size of titanium dioxide increased from 10 to 75 nm as the annealing temperature was raised from 400 to 1000°C (furnace annealing for 1 h) and from 60 to 85 nm as the annealing time at a temperature of 800°C was increased from 30 to 240 min. Diffuse reflection spectra showed that the band gap of TiO2 decreased from 3.3 to 2.6 eV as the annealing temperature was raised from 200 to 1000°C. The specific surface area data obtained by BET measurements showed that the samples annealed at the highest temperature (1000°C) had the smallest surface area, which dropped from 307 to 1 m2/g. The efficiency of the synthesized TiO2 tested as a catalyst for oxidative \(S_{{\text{N}}}^{{\text{H}}}\) cross-coupling of acridine with indole demonstrated an in crease in product yield from 35 to 80% as the annealing temperature was raised to 800°C. Varying the 800°C annealing time from 30 to 180 min had no effect on the reaction product yield, which ranged from 70 to 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Natarajan, T.S., Natarajan, K., Bajaj, H.C., and Tayade, R.J., Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application, Ind. Eng. Chem. Res., 2011, vol. 50, no. 13, pp. 7753–7762.

    Article  CAS  Google Scholar 

  2. Volkov, A.V., Polyanskaya, V.V., Moskvina, M.A., Zezin, S.B., Dement’ev, A.I., Volynskii, A.L., and Bakeev, N.F., Structure and properties of hybrid PP/TiO2 nanocomposites and mesoporous TiO2 prepared via solvent crazing, Nanotechnol. Russ., 2012, vol. 7, no. 7, pp. 377–384.

    Article  Google Scholar 

  3. Vokhmintsev, A.S., Weinstein, I.A., Kamalov, R.V., and Dorosheva, I.B., Memristive effect in a nanotubular layer of anodized titanium dioxide, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 9, pp. 932–935.

    Article  CAS  Google Scholar 

  4. Rempel, A.A. and Valeeva, A.A., Nanostructured titanium dioxide for medical chemistry, Izv. Akad. Nauk, Ser. Khim., 2019, no. 12, pp. 2163–2171.

  5. Li, W., Bak, T., Atanacio, A., and Nowotny, J., Photocatalytic properties of TiO2: effect of niobium and oxygen activity on partial water oxidation, Appl. Catal., A, 2016, no. 198, pp. 243–253.

  6. Addamo, M., Augugliaro, V., Coluccia, S., Faga, M.G., Garc’ıa-L’opez, E., Loddo, V., Marcì, G., Martra, G., and Palmisano, L., Photocatalytic oxidation of acetonitrile in gas-solid and liquid–solid regimes, J. Catal., 2005, vol. 235, pp. 209–220.

    Article  CAS  Google Scholar 

  7. Augugliaro, V., Caronna, T., Paola, A., Marcì, G., Pagliaro, M., Palmisano, G., and Palmisano, L., TiO2-based photocatalysis for organic synthesis, Environ. Benign Photocatal., 2010, pp. 623–645.

    Google Scholar 

  8. Maldotti, A., Molinari, A., and Amadelli, R., Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2, Chem. Rev., 2002, vol. 102, pp. 3811–3836.

    Article  CAS  Google Scholar 

  9. Valeeva, A.A., Dorosheva, I.B., Kozlova, E.A., Kamalov, R.V., Vokhmintsev, A.S., Selishchev, D.S., Saraev, A.A., Gerasimov, E.Yu., Weinstein, I.A., and Rempel, A.A., Influence of calcination on photocatalytic properties of nonstoichiometric titanium dioxide nanotubes, J. Alloys Compd., 2019, vol. 796, pp. 293–299.

    Article  CAS  Google Scholar 

  10. Hashimoto, K., Irie, H., and Fujishima, A., TiO2 photocatalysis: a historical overview and future prospects, J. Appl. Phys., 2005, vol. 44, pp. 8269–8285.

    Article  CAS  Google Scholar 

  11. Gambarotti, C., Melone, L., and Punta, C., Semiconductors in organic photosynthesis, Artif. Photosynth., 2012, pp. 79–114.

  12. Ciamician, G., The photochemistry of the future, Science, 1912, vol. 36, no. 926, pp. 385–394.

    Article  CAS  Google Scholar 

  13. Wang, C.M. and Mallouk, T.E., New photochemical method for selective fluorination of organic molecules, J. Am. Chem. Soc., 1990, vol. 112, pp. 2016–2018.

    Article  CAS  Google Scholar 

  14. Palmisano, G., Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions, Chem. Commun., 2006, pp. 1012–1014.

  15. Nam, W.S. and Han, G.Y., Characterization and photocatalytic performance of nanosize TiO2 powders prepared by the solvothermal method, Korean J. Chem. Eng., 2003, vol. 20, no. 6, pp. 1149–1153.

    Article  CAS  Google Scholar 

  16. Najafi, M., Kermanpur, A., Rahimipour, M.R., and Najafizadeh, A., Effect of TiO2 morphology on structure of TiO2–graphene oxide nanocomposite synthesized via a one-step hydrothermal method, J. Alloys Compd., 2017, no. 722, pp. 272–277.

  17. Valeeva, A., Kozlova, E., Vokhmintsev, A., Kamalov, R., Dorosheva, I., Saraev, A., Weinstein, I., and Rempel, A., Nonstoichiometric titanium dioxide nanotubes with enhanced catalytical activity under visible light, Sci. Rep., 2018, vol. 8, pp. 9607–9617.

    Article  CAS  Google Scholar 

  18. Sotelo-Vazquez, C., Quesada-Cabrera, R., Darr, J.A., and Parkin, I.P., Single-step synthesis of doped TiO2 stratified thin-films by atmospheric-pressure chemical vapour deposition, J. Mater. Chem. A, 2014, vol. 2, no. 19, pp. 7082–7087.

    Article  CAS  Google Scholar 

  19. Baran, E. and YazIcI, B., Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production, Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 2498–2511.

    Article  CAS  Google Scholar 

  20. Ibrahim, A., Mekprasart, W., and Pecharapa, W., Anatase/rutile TiO2 composite prepared via sonochemical process and their photocatalytic activity, Mater. Today: Proc., 2017, vol. 4, no. 5, pp. 6159–6165.

    Google Scholar 

  21. Maragatha, J., Rajendran, S., Endo, T., and Karuppuchamy, S., Microwave synthesis of metal doped TiO2 for photocatalytic applications, J. Mater. Sci.–Mater. Electron., 2017, vol. 28, no. 7, pp. 5281–5287.

    Article  CAS  Google Scholar 

  22. Romero-Arcos, M., Garnica-Romo, M.G., and Martínez-Flores, H.E., Electrochemical study and characterization of an amperometric biosensor based on the immobilization of laccase in a nanostructure of TiO2 synthesized by the sol–gel method, Materials, 2016, vol. 9, no. 7, paper 543.

  23. Dorosheva, I.B., Valeeva, A.A., and Rempel, A.A., Sol–gel synthesis of nanosized titanium dioxide at various pH of the initial solution, AIP Conf. Proc., 2017, vol. 1886, paper 020006.

  24. Caronna, T., Gambarotti, C., Palmisano, L., Punta, C., and Recupero, F., Sunlight-induced reactions of some heterocyclic bases with ethers in the presence of TiO2 – a green route for the synthesis of heterocyclic aldehydes, J. Photochem. Photobiol., A, 2005, vol. 171, pp. 237–242.

    Article  CAS  Google Scholar 

  25. Caronna, T., Gambarotti, C., Palmisano, L., Punta, C., and Recupero, F., Sunlight induced functionalisation of some heterocyclic bases in the presence of polycrystalline TiO2, Chem. Commun., 2003, pp. 2350–2351.

  26. Boonstra, A.H. and Mutsaers, C.A.H.A., Adsorption of hydrogen peroxide on the surface of titanium dioxide, J. Phys. Chem., 1975, vol. 79, pp. 1940–1943.

    Article  CAS  Google Scholar 

  27. Dorosheva, I.B., Rempel, A.A., Trestsova, M.A., Utepova, I.A., and Chupakhin, O.N., Synthesis of a TiO2 photocatalyst for dehydrogenative cross-coupling of (hetero)arenes, Inorg. Mater., 2019, vol. 55, no. 2, pp. 155–161.

    Article  CAS  Google Scholar 

  28. Utepova, I.A., Trestsova, M.A., Chupakhin, O.N., Charushin, V.N., and Rempel, A.A., Aerobic oxidative C–H/C–H coupling of azaaromatics with indoles and pyrroles in the presence of TiO2 as a photocatalyst, Green Chem., 2015, vol. 17, pp. 4401–4410.

    Article  CAS  Google Scholar 

  29. Utepova, I.A., Chupakhin, O.N., Trestsova, M.A., Musikhina, A.A., Kucheryavaya, D.A., Charushin, V.N., Rempel, A.A., Kozhevnikova, N.S., Valeeva, A.A., Mikhaleva, A.I., and Trofimov, B.A., Direct functionalization of the C–H bond in (hetero)arenes: aerobic photoinduced oxidative coupling of azines with aromatic nucleophiles (\(S_{{\text{N}}}^{{\text{H}}}\)-reactions) in the presence of a CdS/TiO2 photocatalyst, Russ. Chem. Bull., Int. Ed., 2016, vol. 65, pp. 445–450.

    CAS  Google Scholar 

  30. Chupakhin, O.N. and Charushin, V.N., Nucleophilic C–H functionalization of arenes: a new logic of organic synthesis, Pure Appl. Chem., 2017, vol. 89, pp. 1195–1208.

    Article  CAS  Google Scholar 

  31. Chupakhin, O.N., Shchepochkin, A.V., and Charushin, V.N., Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C–C coupling reactions, Green Chem., 2017, vol. 19, pp. 2931–2935.

    Article  CAS  Google Scholar 

  32. Akue-Gedu, R., Debiton, E., Ferandin, Y., Meijer, L., Prudhomme, M., Anizon, F., and Moreau, P., Synthesis and biological activities of aminopyrimidyl-indoles structurally related to meridianins, Bioorg. Med. Chem., 2009, vol. 17, pp. 4420–4424.

    Article  CAS  Google Scholar 

  33. Imperatore, C., Aiello, A., D’Aniello, F., Senese, M., and Menna, M., Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development, Molecules, 2014, vol. 19, pp. 20391–20423.

    Article  Google Scholar 

  34. Zhang, H., Wu, W., Feng, C., Liu, Z., Bai, E., Wang, X., Lei, M., Cheng, H., Feng, H., Shi, J., Wang, J., Zhang, Z., Jin, T., Chen, S., Hu, S., and Zhu, Y., Design, synthesis, SAR discussion, in vitro and in vivo evaluation of novel selective EGFR modulator to inhibit L858R/T790M double mutants, Eur. J. Med. Chem., 2017, vol. 135, pp. 12–23.

    Article  CAS  Google Scholar 

  35. Madadi, N.R., Penthala, N.R., Janganati, V., and Crooks, P.A., Synthesis and anti-proliferative activity of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs against human tumor cell lines, Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 601–603.

    Article  CAS  Google Scholar 

  36. Raju, P.A.G., Mallikarjunarao, R., Gopal, K.V., Sreeramulu, J., Reddy, D.M., Krishnamurthi, K.P., and Reddy, S.R., Synthesis and biological activity of some new indole derivatives containing pyrazole moiety, J. Chem. Pharm. Res., 2013, vol. 5, pp. 21–27.

    Google Scholar 

  37. Swarnkar, D., Ameta, R., and Vyas, R., Microwave-assisted synthesis, characterization and biological activity of some pyrazole derivatives, Int. Res. J. Pharm., 2014, vol. 5, pp. 459–462.

    Article  Google Scholar 

  38. Rempel, A.A., Sulfide, carbide, and oxide-based hybrid nanoparticles, Izv. Akad. Nauk, Ser. Khim., 2013, no. 4, pp. 857–869.

  39. Sasikala, R., Sudarsan, V., Sudakar, C., Naik, R., Panicker, L., and Bharadwaj, S.R., Modification of the photocatalytic properties of self doped TiO2 nanoparticles for hydrogen generation using sunlight type radiation, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 6105–6113.

    Article  CAS  Google Scholar 

  40. Tryba, B., Tygielska, M., Colbeau-Justin, C., Kusiak-Nejman, E., and Kapica-Kozar, J., Wróbel, R., Żołnierkiewicz, G., and Guskos, N., Influence of pH of sol–gel solution on phase composition and photocatalytic activity of TiO2 under UV and visible light, Mater. Res. Bull., 2016, no. 84, pp. 152–161.

  41. Ganesan, N.M., Senthil, T.S., Muthukumarasamy, N., and Balasundaraprabhu, R., The role of pH on the structural properties and photocatalytic applications of TiO2 nanocrystals prepared by simple sol–gel method, Int. J. Chem. Technol. Res., 2014, vol. 6, no. 5, pp. 3078–3082.

    CAS  Google Scholar 

  42. Caronna, T., Gambarotti, C., Palmisano, L., Punta, C., Pierini, M., and Recupero, F., Sunlight-induced functionalisation reactions of heteroaromatic bases with aldehydes in the presence of TiO2: a hypothesis on the mechanism, J. Photochem. Photobiol., A, 2007, vol. 189, pp. 322–328.

    Article  CAS  Google Scholar 

  43. Jain, A. and Vaya, D., Photocatalytic activity of TiO2 nanomaterial, J. Chil. Chem. Soc., 2017, vol. 62, no. 4, pp. 3683–3690.

    Article  CAS  Google Scholar 

  44. Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H., Sakata, T., and Yanagida, S., Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2, J. Mater. Chem., 2001, vol. 11, paper 1694.

  45. Yurdakal, S., Palmisano, G., Loddo, V., Alagöz, O., Augugliaro, V., and Palmisano, L., Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature, Green Chem., 2009, vol. 11, paper 510.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Dorosheva.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorosheva, I.B., Valeeva, A.A., Rempel, A.A. et al. Synthesis and Physicochemical Properties of Nanostructured TiO2 with Enhanced Photocatalytic Activity. Inorg Mater 57, 503–510 (2021). https://doi.org/10.1134/S0020168521050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521050022

Keywords:

Navigation