Skip to main content
Log in

Inorganic Materials for Regenerative Medicine

  • Published:
Inorganic Materials Aims and scope

Abstract

Methods that are used in regenerative medicine rely on the inherent ability of living organisms to regenerate their tissue. If the size (volume) of a defect exceeds some critical level, regeneration can be initiated and maintained using resorbable porous scaffolds made of natural, artificial, or synthetic materials capable of temporary defect compensation. When modified with pharmaceutical products and specific proteins or cells, such porous scaffolds are referred to as tissue engineering constructs. Inorganic resorbable materials are most frequently used for bone tissue defect repair. Natural bone is a composite having a polymer (collagen) matrix filled with calcium phosphate nanocrystals in the form of insoluble calcium hydroxyapatite. For this reason, calcium phosphate-based materials are leaders of medical inorganic materials research. To date, resorbable biocompatible materials based on tricalcium phosphate, calcium pyrophosphate, brushite, monetite, and octacalcium phosphate have been developed. Calcium hydroxyapatite is known as an inorganic ion exchanger. Because of this, the composition of bone tissue includes, in addition to phosphate and calcium ions, carbonate, silicate, and sulfate ions, as well as sodium, potassium, magnesium, iron, strontium, zinc and some other metal ions. The fact that bone tissue contains anions substituting for orthophosphate ions or hydroxide ions in the calcium hydroxyapatite of bone tissue prompted researchers to produce resorbable materials based on calcium sulfates, calcium carbonate, and calcium phosphates in which orthophosphate ions are replaced by anions mentioned above. Cation substitutions in calcium hydroxyapatite of bone tissue and the chemical composition of the medium of an organism allow one to produce and use resorbable materials for bone implants consisting of cation-substituted calcium phosphates and calcium–biocompatible cation double phosphates, such as sodium-substituted tricalcium phosphate, potassium-substituted tricalcium phosphate, sodium rhenanite, potassium rhenanite, and calcium magnesium double pyrophosphate. The resorption of an inorganic material intended for use as a pharmaceutical product can be controlled via designing a preset phase composition. The above-mentioned biocompatible resorbable phases can be used in various combinations in already existing composite materials or composites under development. The microstructure of a biocompatible resorbable inorganic material can be formed as a result of various physicochemical processes. The phase composition and microstructure of a ceramic material are determined by solid-state and liquid-phase sintering processes, as well as by heterogeneous chemical reactions during firing. The phase composition and microstructure of cement stone are formed as a result of chemical binding reactions initiated by the addition of water or aqueous solutions. Amorphous materials can be prepared via melting of starting reagents or sol–gel processing. The osteoconductivity of a biocompatible resorbable inorganic material is an important property necessary for body fluids and bone cells to be able to penetrate into the implant material. Macroporosity, which determines the osteoconductivity of a resorbable inorganic material, can be produced using various technological approaches. 3D printing methods make it possible to obtain materials with tailored phase composition and microstructure and permeable macroporosity of preset architecture. A large surface area of a porous inorganic material is thought to be a factor of controlling the resorption rate. This review summarizes information about existing biocompatible resorbable inorganic materials for regenerative medicine and considers physicochemical principles of the preparation of such materials with the use of synthetic starting powders and natural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wang, W. and Yeung, K.W.K., Bone grafts and biomaterials substitutes for bone defect repair: a review, Bioact. Mater., 2017, vol. 2, no. 4, pp. 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kirilova, I.A., Sadovoi, M.A., and Podorozhnaya, V.T., Comparative characteristics of materials for bone grafting, Khirurg. Pozvonochnika, 2012, no. 3, pp. 72–83. https://doi.org/10.14531/ss2012.3.72-83

  3. Mudraya, V.N., Stepanenko, I.G., and Shapovalov, A.S., Application of bone graft materials in modern dentistry, Ukr. Zh. Klinichn. Lab. Med., 2010, vol. 5, no. 1, pp. 52–57. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/ cgiirbis_64.exe?C21COM=2&I21DBN=UJRN& P21DBN=UJRN&IMAGE_FILE_DOWNLOAD= 1&Image_file_name=PDF/Ujkl_2010_5_1_15.pdf

  4. Titsinides, S., Agrogiannis, G., and Karatzas, T., Bone grafting materials in dentoalveolar reconstruction: a comprehensive review, Jpn. Dent. Sci. Rev., 2019, vol. 55, pp. 26–32. https://doi.org/10.1016/j.jdsr.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Balaji, V.R., Manikandan, D., and Ramsundar, A., Bone grafts in periodontics, Matrix Sci. Med., 2020, vol. 4, no. 3, pp. 57–63. https://doi.org/10.4103/MTSM.MTSM_2_19

    Article  Google Scholar 

  6. Matveichuk, I.V., Rozanov, V.V., and Litvinov, Yu.Yu., Biophysical properties of bone tissue for biomedical applications, Al’manakh Klinich. Med., 2016, vol. 44, no. 2, pp. 193–202. https://doi.org/10.18786/2072-0505-2016-44-2-193-202

    Article  Google Scholar 

  7. Ramesh, N., Moratti, S.C., and Dias, G.J., Hydroxyapatite–polymer biocomposites for bone regeneration: a review of current trends, J. Biomed. Mater. Res., Part B, 2018, vol. 106, no. 5, pp. 2046–2057. https://doi.org/10.1002/jbm.b.33950

    Article  CAS  Google Scholar 

  8. Nonoyama, T., Robust hydrogel–bioceramics composite and its osteoconductive properties, Polym. J., 2020, vol. 52, pp. 709–716. https://doi.org/10.1038/s41428-020-0332-y

    Article  CAS  Google Scholar 

  9. Filippi, M., Born, G., Chaaban, M., and Scherberich, A., Natural polymeric scaffolds in bone regeneration, Front. Bioeng. Biotechnol., 2020, vol. 8, pp. 474–479. https://doi.org/10.3389/fbioe.2020.00474

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aquino-Martínez, R., Angelo, A.P., and Pujol, F.V., Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration, Stem Cell Res. Ther., 2017, vol. 8, no. 1, pp. 1–10. https://doi.org/10.1186/s13287-017-0713-0

    Article  CAS  Google Scholar 

  11. Roden, J.R.D., Principles of bone grafting, Oral Maxillofac. Surg. Clin., 2010, vol. 22, no. 3, pp. 295–300. https://doi.org/10.1016/j.coms.2010.06.001

    Article  Google Scholar 

  12. Khlusov, I.A., Karlov, A.V., Pozhen’ko, K.S., Sukhodolo, I.V., and Khlusova, M.Yu., Effect of calcium phosphate surface roughness and solubility on the osteogenic properties of bone marrow cells, Byull. Eksperim. Biol. Med., 2006, vol. 141, no. 1, pp. 107–112.

    Article  Google Scholar 

  13. Navarro, M., Michiardi, A., Castan, O., and Planell, J.A., Biomaterials in orthopaedics, J. R. Soc., Interface, 2008, vol. 5, no. 27, pp. 1137–1158.https://doi.org/10.1098/rsif.2008.0151

    Article  CAS  Google Scholar 

  14. Ginebra, M.P., Canal, C., Espanol, M., Pastorino, D., and Montufar, E.B., Calcium phosphate cements as drug delivery materials, Adv. Drug Delivery Rev., 2012, vol. 64, no. 12, pp. 1090–1110. https://doi.org/10.1016/j.addr.2012.01.008

    Article  CAS  Google Scholar 

  15. Qu, H., Fu, H., Han, Z., and Sun, Y., Biomaterials for bone tissue engineering scaffolds: a review, RSC Adv., 2019, vol. 9, no. 45, pp. 26252–26262. https://doi.org/10.1039/C9RA05214C

    Article  CAS  Google Scholar 

  16. Janicki, P. and Schmidmaier, G., What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells, Injury, 2011, vol. 42, pp. S77–S81. https://doi.org/10.1016/j.injury.2011.06.014

    Article  PubMed  Google Scholar 

  17. Verron, E., Khairoun, I., Guicheux, J., and Bouler, J.M., Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discov. Today, 2010, vol. 15, nos. 13–14, pp. 547–552. https://doi.org/10.1016/j.drudis.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  18. Dorozhkin, S.V., Functionalized calcium orthophosphates (CaPO4) and their biomedical applications, J. Mater. Chem. B, 2019, vol. 7, no. 47, pp. 7471–7489. https://doi.org/10.1039/C9TB01976F

    Article  CAS  PubMed  Google Scholar 

  19. Golovanova, O.A. and Golovchenko, K.K., Amino acid adsorption on surfaces of brushite and hydroxylapatite, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 11, pp. 2275–2283. https://doi.org/10.1134/S0036024419110104

    Article  CAS  Google Scholar 

  20. Gui, N., Xu, W., Myers, D.E., Shukla, R., Tang, H.P., and Qian, M., The effect of ordered and partially ordered surface topography on bone cell responses: a review, Biomater. Sci, 2018, vol. 6, no. 2, pp. 250–264. https://doi.org/10.1039/C7BM01016H

    Article  CAS  Google Scholar 

  21. Orlov, N.K., Putlyaev, V.I., Evdokimov, P.V., Safronova, T.V., Klimashina, E.S., and Milkin, P.A., Resorption of Ca3–xM2x(PO4)2 (M= Na, K) calcium phosphate bioceramics in model solutions, Inorg. Mater., 2018, vol. 54, no. 5, pp. 500–508. https://doi.org/doi 10.1134/S0020168518050096

    Article  CAS  Google Scholar 

  22. Eliaz, N. and Metoki, N., Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications, Materials, 2017, vol. 10, no. 4, p. 334. https://doi.org/10.3390/ma10040334

    Article  CAS  PubMed Central  Google Scholar 

  23. Von Euw, S., Wang, Y., Laurent, G., Drouet, C., Babonneau, F., Nassif, N., and Azais, T., Bone mineral: new insights into its chemical composition, Sci. Rep., 2019, vol. 9, no. 1, pp. 1–11. https://doi.org/10.1038/s41598-019-44620-6

    Article  CAS  Google Scholar 

  24. Amphlett, C.B., Inorganic Ion Exchangers, Amsterdam: Elsevier, 1964.

    Google Scholar 

  25. Berlyand, A.S., Snyakin, A.P., and Prokopov, A.A., Adsorption capacity of hydroxyapatite for several amino acids and heavy metal ions, Pharm. Chem. J., 2012, vol. 46, no. 5, pp. 292–294. https://doi.org/10.1007/s11094-012-0782-4

    Article  CAS  Google Scholar 

  26. Ivanets, A.I., Shashkova, I.L., Kitikova, N.V., Radkevich, A.V., and Davydov, Yu.P., Recovery of strontium ions with calcium and magnesium phosphates from aqueous solutions against the background of CaCl2, Radiochemistry, 2015, vol. 57, no. 6, pp. 610–615. https://doi.org/10.1134/S1066362215060089

    Article  CAS  Google Scholar 

  27. Bang, L.T., Ramesh, S., Purbolaksono, J., Ching, Y.C., Long, B.D., Chandran, H., and Othman, R., Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method, Mater. Des., 2015, vol. 87, pp. 788–796. https://doi.org/10.1016/j.matdes.2015.08.069

    Article  CAS  Google Scholar 

  28. Danil’chenko, S.N., Structure and properties of calcium apatites from the viewpoint of biomineralogy and biomaterials research (a review), Visn. Sum. Derzh. Univ. Ser. Fiz., Mat., Mekh., 2007, no. 2, pp. 33–59. https://essuir.sumdu.edu.ua/handle/123456789/1152

  29. Gerk, S.A. and Golovanova, O.A., Elemental composition of normal and pathological human bone tissue, Vestn. Omsk. Univ., 2015, no. 4 (78), pp. 39–44.

  30. Lemesheva, S.A., Golovanova, O.A., and Turenkov, S.V., Characteristic features of the composition of human bone tissue, Khim. Interesakh Ustoich. Razvit., 2009, vol. 17, no. 3, pp. 327–332.

    CAS  Google Scholar 

  31. Lonsdale, K., Human stones: limited studies give some details of composition, rates of growth, distribution, and possible causes, Science, 1968, vol. 159, no. 3820, pp. 1199–1207. https://doi.org/10.1126/science.159.3820.1199

    Article  CAS  PubMed  Google Scholar 

  32. Abhishek, A. and Doherty, M., Update on calcium pyrophosphate deposition, Clin. Exp. Rheumatol., 2016, vol. 34, suppl. 98, pp. 32–38. https://www.clinexprheumatol.org/article.asp?a=10848

    PubMed  Google Scholar 

  33. Sevost’yanova, O.A., Boshchenko, V.S., Osadchii, V.K., Parnachev, V.P., and Polienko, A.K., Mineralogical composition and structure of urinary stones in the inhabitants of Tomsk region (Tomsk), Urologiya, 2017, no. 2, pp. 76–81. https://doi.org/10.18565/urol.2017.2.71-75

  34. Lemesheva, S.A., Golovanova, O.A., Muromtsev, I.V., and Turenkov, S.V., Effects of pathogenic mineralization processes in the case of coxarthrosis on the composition and structure of human bone tissue, Vestn. Omsk. Univ., 2010, no. 2 (56), pp. 106–112.

  35. Golovanova, O.A., Biomineralogy of human urinary stones, gallstones, dental calculi, and salivary stones, Extended Abstract of Doctoral (Geol.–Mineral.) Dissertation, Tomsk: Tomsk Polytech. Univ., 2009.

  36. Golovanova, O.A., Frank-Kamenetskaya, O.V., and Punin, Yu.O., Specific features of pathogenic mineral formation in the human body, Russ. J. Gen. Chem., 2011, vol. 81, no. 6, pp. 1392–1406. https://doi.org/10.1134/S1070363211060442

    Article  CAS  Google Scholar 

  37. Antonova, M.O., Kuz’micheva, G.M., Rudenko, V.I., Natykan, A.A., and Sadovskaya, N.V., Composition and microstructure of coralline urinary stones: theories of growth, Tonk. Khim. Technol., 2013, vol. 8, no. 4, pp. 64–72. https://www.finechem-mirea.ru/jour/article/view/572/618

  38. Pina, S., Ribeiro, V.P., Marques, C.F., Maia, F.R., Silva, T.H., Reis, R.L., and Oliveira, J.M., Scaffolding strategies for tissue engineering and regenerative medicine applications, Materials, 2019, vol. 12, no. 11, pp. 1824–1828. https://doi.org/10.3390/ma12111824

    Article  CAS  PubMed Central  Google Scholar 

  39. Bohner, M., Bioresorbable ceramics, in Degradation Rate of Bioresorbable Materials: Prediction and Evaluation, Woodhead Publishing Series in Biomaterials, Cambridge: Woodhead, 2008, pp. 95–114. https://doi.org/10.1533/9781845695033.2.95

  40. Ievlev, V.M., Putlyaev, V.I., Safronova, T.V., and Evdokimov, P.V., Additive technologies for making highly permeable inorganic materials with tailored morphological architectonics for medicine, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1297–1315. https://doi.org/10.1134/S0020168515130038

    Article  CAS  Google Scholar 

  41. Raynaud, S., Champion, E., Bernache-Assollant, D., and Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio: I. Synthesis, characterisation and thermal stability of powders, Biomaterials, 2002, vol. 23, no. 4, pp. 1065–1072. https://doi.org/10.1016/S0142-9612(01)00218-6

    Article  CAS  PubMed  Google Scholar 

  42. Dorozhkin, S.V., Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications, Ceram. Int., 2016, vol. 42, no. 6, pp. 6529–6554. https://doi.org/10.1016/j.ceramint.2016.01.062

    Article  CAS  Google Scholar 

  43. Orlov, N.K., Evdokimov, P.V., Milkin, P.A., Garshev, A.V., Putlayev, V.I., Grebenev, V.V., and Gunster, J., Phase equilibria in CaNaPO4–CaKPO4 system and their influence on formation of bioceramics based on mixed Ca–K–Na phosphates, J. Eur. Ceram. Soc., 2019, vol. 39, no. 16 P, pp. 5410–5422. https://doi.org/10.1016/j.jeurceramsoc.2019.07.044

  44. Safronova, T.V., Putlyaev, V.I., Filippov, Ya.Yu., Shatalova, T.B., and Fatin, D.S., Ceramics based on brushite powder synthesized from calcium nitrate and disodium and dipotassium hydrogen phosphates, Inorg. Mater., 2018, vol. 54, no. 2, pp. 195–207. https://doi.org/10.1134/S0020168518020127

    Article  CAS  Google Scholar 

  45. Putlyaev, V.I. and Safronova, T.V., A new generation of calcium phosphate biomaterials: the role of phase and chemical compositions, Glass Ceram., 2006, vol. 63, nos. 3–4, pp. 99–102. https://doi.org/10.1007/s10717-006-0049-1

    Article  CAS  Google Scholar 

  46. Safronova, T.V. and Putlyaev, V.I., Medical inorganic materials research in Russia: calcium phosphate materials, Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, no. 1, pp. 24–47. http://nanojournal.ifmo.ru/en/wp-content/uploads/2013/02/NPCM2013-41P24.pdf

  47. Montazerian, M. and Zanotto, E.D., A guided walk through Larry Hench’s monumental discoveries, J. Mater. Sci., 2017, vol. 52, no. 15, pp. 8695–8732. https://doi.org/10.1007/s10853-017-0804-4

    Article  Google Scholar 

  48. Jones, J.R., Review of bioactive glass: from Hench to hybrids, Acta Biomater., 2015, vol. 23, no. 5, pp. 553–582. https://doi.org/10.1016/j.actbio.2015.07.019

    Article  Google Scholar 

  49. Comesaña, R., Lusquiños, F., Del Val, J., Quintero, F., Riveiro, A., Boutinguiza, M., Jones, J.R., Hill, R.G., and Pou, J., Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates, Sci. Rep., 2015, vol. 5, paper 10677. https://doi.org/10.1038/srep10677/

  50. Abou Neel, E.A., Pickup, D.M., Valappil, S.P., Newport, R.J., and Knowles, J.C., Bioactive functional materials: a perspective on phosphate-based glasses, J. Mater. Chem., 2009, vol. 19, no. 6, pp. 690–701. https://doi.org/doi 10.1039/B810675D

    Article  CAS  Google Scholar 

  51. Wu, C. and Chang, J., A review of bioactive silicate ceramics, Biomed. Mater., 2013, vol. 8, no. 3, paper 032001. https://doi.org/10.1088/1748-6041/8/3/032001

  52. Srinath, P., Abdul Azeem, P., and Venugopal Reddy, K., Review on calcium silicate-based bioceramics in bone tissue engineering, Int. J. Appl. Ceram. Technol., 2020, vol. 17, no. 5, pp. 2450–2464. https://doi.org/10.1111/ijac.13577

    Article  CAS  Google Scholar 

  53. Cai, Y., Zhang, S., Zeng, X., Wang, Y., Qian, M., and Weng, W., Improvement of bioactivity with magnesium and fluorine ions incorporated hydroxyapatite coatings via sol–gel deposition on Ti6Al4V alloys, Thin Solid Films, 2009, vol. 517, no. 17, pp. 5347–5351. https://doi.org/10.1016/j.tsf.2009.03.071

    Article  CAS  Google Scholar 

  54. Hsu, H.J., Waris, R.A., Ruslin, M., Lin, Y.H., Chen, C.S., and Ou, K.L., An innovative α-calcium sulfate hemihydrate bioceramic as a potential bone graft substitute, J. Am. Ceram. Soc., 2018, vol. 101, no. 1, pp. 419–427. https://doi.org/10.1111/jace.15181

    Article  CAS  Google Scholar 

  55. Yang, Z., Yang, D.A., and Zhao, H., Degradation behavior of calcium sulfate/β-tricalcium phosphate composites in Tris, Key Eng. Mater., 2007, vol. 336, pp. 1635–1637. https://doi.org/10.14028/www.scientific.net/KEM.336-338.1635

    Article  Google Scholar 

  56. Yang, D., Yang, Z., Li, X., Di, L.Z., and Zhao, H., A study of hydroxyapatite/calcium sulphate bioceramics, Ceram. Int., 2005, vol. 31, no. 7, pp. 1021–1023. https://doi.org/10.1016/j.ceramint.2004.10.016

    Article  CAS  Google Scholar 

  57. Shao, H., Yu, X., Zhang, Z., Lin, T., Peng, J., Wang, A., Liu, S., and Zhao, M., Effect of different CaSO4 contents on CaSiO3–CaSO4 porous composite bone scaffolds by 3D gel-printing, Int. J. Appl. Ceram. Technol., 2020, vol. 17, no. 6, pp. 2762–2767. https://doi.org/10.1111/ijac.13587

    Article  CAS  Google Scholar 

  58. Chang, M.P., Hsu, H.C., Tuan, W.H., and Lai, P.L., A feasibility study regarding the potential use of silica-doped calcium sulfate anhydrite as a bone void filler, J. Med. Biol. Eng., 2017, vol. 37, no. 6, pp. 879–886. https://doi.org/10.1007/s40846-017-0253-1

    Article  Google Scholar 

  59. Kuo, S.T., Wu, H.W., Tuan, W.H., Tsai, Y.Y., Wang, S.F., and Sakka, Y., Porous calcium sulfate ceramics with tunable degradation rate, J. Mater. Sci.: Mater. Med., 2012, vol. 23, no. 10, pp. 2437–2443. https://doi.org/10.1007/s10856-012-4704-5

    Article  CAS  Google Scholar 

  60. Yukna, R.A., Clinical evaluation of coralline calcium carbonate as a bone replacement graft material in human periodontal osseous defects, J. Periodontol., 1994, vol. 65, no. 2, pp. 177–185. https://doi.org/10.1902/jop.1994.65.2.177

    Article  CAS  PubMed  Google Scholar 

  61. Lemos, A.F. and Ferreira, J.M.F., Porous bioactive calcium carbonate implants processed by starch consolidation, Mater. Sci. Eng., C, 2000, vol. 11, no. 1, pp. 35–40. https://doi.org/10.1016/S0928-4931(00)00134-X

    Article  Google Scholar 

  62. Ishikawa, K., Miyamoto, Y., Tsuchiya, A., Hayashi, K., Tsuru, K., and Ohe, G., Physical and histological comparison of hydroxyapatite, carbonate apatite, and β‑tricalcium phosphate bone substitutes, Materials, 2018, vol. 11, no. 10, paper 1993. https://doi.org/10.3390/ma11101993

  63. Safarzadeh, M., Ramesh, S., Tan, C.Y., Chandran, H., Ching, Y.C., Noor, A.F.M., Krishnasamy, S., and Teng, W.D., Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios, Bol. Soc. Esp. Ceram. Vidr., 2020, vol. 59, no. 2, pp. 73–80. https://doi.org/10.1016/j.bsecv.2019.08.001

    Article  CAS  Google Scholar 

  64. Ortali, C., Julien, I., Drouet, C., and Champion, E., Influence of carbonation on the low-temperature consolidation by spark plasma sintering of carbonated calcium phosphate bioceramics, Ceram. Int., 2020, vol. 46, no. 5, pp. 5799–5810. https://doi.org/10.1016/j.ceramint.2019.11.030

    Article  CAS  Google Scholar 

  65. Ben-Nissan, B., Natural bioceramics: from coral to bone and beyond, Curr. Opin. Solid State Mater. Sci., 2003, vol. 7, nos. 4–5, pp. 283–288. https://doi.org/10.1016/j.cossms.2003.10.001

    Article  CAS  Google Scholar 

  66. Hughes, E., Yanni, T., Jamshidi, P., and Grover, L.M., Inorganic cements for biomedical application: calcium phosphate, calcium sulphate and calcium silicate, Adv. Appl. Ceram., 2015, vol. 114, no. 2, pp. 65–76. https://doi.org/10.1179/1743676114Y.0000000219

    Article  CAS  Google Scholar 

  67. Pietrzak, W.S. and Ronk, R., Calcium sulfate bone void filler: a review and a look ahead, J. Craniofac. Surg., 2000, vol. 11, no. 4, pp. 327–333. https://doi.org/10.1097/00001665-200011040-00009

    Article  CAS  PubMed  Google Scholar 

  68. Vallet-Regí, M. and Salinas, A.J., Ceramics as bone repair materials, in Bone Repair Biomaterials, Cambridge: Woodhead, 2019, pp. 141–178. https://doi.org/10.1016/B978-0-08-102451-5.00006-8

  69. Thomas, M.V. and Puleo, D.A., Calcium sulfate: properties and clinical applications, J. Biomed. Mater. Res., Part B, 2009, vol. 88, no. 2, pp. 597–610. https://doi.org/10.1002/jbm.b.31269

    Article  CAS  Google Scholar 

  70. Cao, X., Lu, H., Liu, J., Lu, W., Guo, L., Ma, M., Zhang, B., and Guo, Y., 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material, J. Mater. Sci.: Mater. Med., 2019, vol. 30, no. 8, paper 88. https://doi.org/10.1007/s10856-019-6290-2

  71. Huan, Z. and Chang, J., Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system, Acta Biomater., 2009, vol. 5, no. 4, pp. 1253–1264. https://doi.org/10.1016/j.actbio.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  72. Liu, W., Zhai, D., Huan, Z., Wu, C., and Chang, J., Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility, Acta Biomater., 2015, vol. 21, pp. 217–227. https://doi.org/10.1016/j.actbio.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  73. Shu, Y., Qiu, F., Zhang, Y., Cao, W., Wu, Z., Nian, S., and Zhou, N., Novel vaterite-containing tricalcium silicate bone cement by surface functionalization using 3-aminopropyltriethoxysilane: setting behavior, in vitro bioactivity and cytocompatibility, Biomed. Mater., 2017, vol. 12, no. 6, paper 065007. https://doi.org/10.1088/1748-605X/aa84b8

  74. Smirnov, V.V., Khairutdinova, D.R., Goldberg, M.A., Antonova, O.S., and Barinov, S.M., Composite cement materials based on calcium sulfate and phosphate for medicine, Dokl. Chem., 2018, vol. 483, no. 1, pp. 279–282. https://doi.org/10.1134/S0012500818110083

    Article  CAS  Google Scholar 

  75. Chen, W.L., Chen, C.K., Lee, J.W., Lee, Y.L., Ju, C.P., and Lin, J.H.C., Structure, properties and animal study of a calcium phosphate/calcium sulfate composite cement, Mater. Sci. Eng., C, 2014, vol. 37, pp. 60–67. https://doi.org/10.1016/j.msec.2013.12.034

    Article  CAS  Google Scholar 

  76. Wang, J.S., Tägil, M., Isaksson, H., Boström, M., and Lidgren, L., Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscle, J. Orthop. Transl., 2016, vol. 6, pp. 10–17. https://doi.org/10.1016/j.jot.2015.11.002

    Article  Google Scholar 

  77. Smirnov, V.V., Khayrutdinova, D.R., Smirnov, S.V., Antonova, O.S., Goldberg, M.A., and Barinov, S.M., Bone cements based on magnesium-substituted calcium sulfates, Dokl. Chem., 2019, vol. 485, no. 1, pp. 100–103. https://doi.org/10.1134/S0012500819030029

    Article  CAS  Google Scholar 

  78. Da Silva, Brum, I., de Carvalho, J.J., da Silva Pires, J.L., de Carvalho, M.A.A., dos Santos, L.B.F., and Elias, C.N., Nanosized hydroxyapatite and β-tricalcium phosphate composite: physico-chemical, cytotoxicity, morphological properties and in vivo trial, Sci. Rep., 2019, vol. 9, no. 1, pp. 1–10. https://doi.org/10.1038/s41598-019-56124-4

    Article  CAS  Google Scholar 

  79. Kivrak, N. and Taş, A.C., Synthesis of calcium hydroxyapatite–tricalcium phosphate (HA–TCP) composite bioceramic powders and their sintering behavior, J. Am. Ceram. Soc., 1998, vol. 81, no. 9, pp. 2245–2252. https://doi.org/10.1111/j.1151-2916.1998.tb02618.x

    Article  CAS  Google Scholar 

  80. Pena, J. and Vallet-Regı, M., Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique, J. Eur. Ceram. Soc., 2003, vol. 23, no. 10, pp. 1687–1696. https://doi.org/10.1016/S0955-2219(02)00369-2

    Article  CAS  Google Scholar 

  81. Hu, X., Zhang, W., and Hou, D., Synthesis, microstructure and mechanical properties of tricalcium phosphate–hydroxyapatite (TCP/HA) composite ceramic, Ceram. Int., 2020, vol. 46, no. 7, pp. 9810–9816. https://doi.org/10.1016/j.ceramint.2019.12.254

    Article  CAS  Google Scholar 

  82. Dorozhkin, S.V. and Epple, M., Biological and medical significance of calcium phosphates, Angew. Chem., Int. Ed. Engl., 2002, vol. 41, no. 17, pp. 3130–3146. https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1

    Article  CAS  Google Scholar 

  83. Scheicher, H. and Wendler, E., US Patent 4917702, 1990. https://patents.google.com/patent/US4917702A/en

  84. Bonfield, W., Best, S.M., and Barralet, J.E., US Patent 6582672, 2003. https://patents.google.com/patent/US5470803A/en

  85. Bonfield, W. and Gibson, I.R., US Patent 6585946, 2003. https://patents.google.com/patent/US6585946B1/en

  86. Ito, A., Ichinose, N., Ojima, K., Layrolle, P., and Kawamura, H., US Patent 6090732, 2000. https://patents.google.com/patent/US6090732A/en

  87. Aoki, H., Kato, K., Tabata, T., and Ogiso, M., US Patent 4149893, 1979. https://patents.google.com/patent/US4149893A/en

  88. Best, S.M., Bonfield, W., Gibson, I.R., Jha, L.J., and Santos, J.D.D.S., US Patent 6312468, 2001. https://patents.google.com/patent/US6312468B1/en

  89. Pankratov, D.A., Dolzhenko, V.D., Ovchenkov, E.A., Anuchina, M.M., and Severin, A.V., Properties of iron-containing nanohydroxyapatite-based composites, Inorg. Mater., 2017, vol. 53, no. 1, pp. 115–124. https://doi.org/10.1134/S0020168517010125

    Article  CAS  Google Scholar 

  90. Samanta, S.K., Devi, K.B., Das, P., Mukherjee, P., Chanda, A., Roy, M., and Nandi, S.K., Metallic ion doped tri-calcium phosphate ceramics: effect of dynamic loading on in vivo bone regeneration, J. Mech. Behav. Biomed. Mater., 2019, vol. 96, pp. 227–235. https://doi.org/10.1016/j.jmbbm.2019.04.051

    Article  CAS  PubMed  Google Scholar 

  91. Fadeeva, I.V., Fomin, A.S., Barinov, S.M., Davydova, G.A., Selezneva, I.I., Preobrazhenskii, I.I., Rusakov, M.K., Fomina, A.A., and Volchenkova, V.A., Synthesis and properties of manganese-containing calcium phosphate materials, Inorg. Mater., 2020, vol. 56, no. 7, pp. 700–706. https://doi.org/10.1134/S0020168520070055

    Article  CAS  Google Scholar 

  92. Fadeeva, I.V., Fomin, A.S., Davydova, G.A., Filippov, Ya.Yu., Shaposhnikov, M.E., Volchenkova, V.A., Selezneva, I.I., and Barinov, S.M., Porous ceramics based on substituted tricalcium phosphates for bone tissue recovery, Inorg. Mater. Appl. Res., 2019, vol. 10, no. 4, pp. 796–801. https://doi.org/10.1134/S2075113319040105

    Article  Google Scholar 

  93. Safronova, T.V., Selezneva, I.I., Tikhonova, S.A., Kiselev, A.S., Davydova, G.A., Shatalova, T.B., Larionov, D.S., and Rau, J.V., Biocompatibility of biphasic α, β-tricalcium phosphate ceramics in vitro, Bioact. Mater., 2020, vol. 5, no. 2, pp. 423–427. https://doi.org/10.1016/j.bioactmat.2020.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown, P.W., Phase relationships in the ternary system CaO–P2O5–H2O at 25°C, J. Am. Ceram. Soc., 1992, vol. 75, no. 1, pp. 17–22. https://doi.org/10.1111/j.1151-2916.1992.tb05435.x

    Article  CAS  Google Scholar 

  95. Feng, S.S. and Rockett, T.J., The system CaO–P2O5–H2O at 200°C, J. Am. Ceram. Soc., 1979, vol. 62, nos. 11–12, pp. 619–620. https://doi.org/10.1111/j.1151-2916.1979.tb12745.x

    Article  CAS  Google Scholar 

  96. Martin, R.I. and Brown, P.W., Phase equilibria among acid calcium phosphates, J. Am. Ceram. Soc., 1997, vol. 80, pp. 1263–1266. https://doi.org/10.1111/j.1151-2916.1997.tb02973.x

    Article  CAS  Google Scholar 

  97. Bassett, H., LVI.—The phosphates of calcium. Part IV. The basic phosphates, Chem. Soc. Trans. J., 1917, vol. 111, pp. 620–642. https://doi.org/10.1039/CT9171100620

    Article  Google Scholar 

  98. Martin, R.I., TenHuisen, K.S., Leamy, P., and Brown, P.W., Enthalpies of formation of compounds in the P2O5–CaO–H2O system, J. Phys. Chem. B, 1997, vol. 101, no. 45, pp. 9375–9379. https://doi.org/10.1021/jp972053h

    Article  CAS  Google Scholar 

  99. Egan, E.P., Jr. and Luff, B.B., Heats of solution at 25°C. in the system P2O5–CaO–H2O, J. Chem. Eng. Data, 1966, vol. 11, no. 4, pp. 520–532. https://doi.org/10.1021/je60031a016

    Article  CAS  Google Scholar 

  100. Aldabergenov, M.K. and Balakaeva, G.T., Triangulation of the CaO–P2O5–H2O system: an analysis of the phase diagram, Russ. J. Phys. Chem., 1998, vol. 72, no. 9, pp. 1543–1546.

    CAS  Google Scholar 

  101. Skinner, H.C.W., Studies in the basic mineralizing system, P2O5–CaO–H2O, Calcif. Tissue Res., 1974, vol. 14, no. 1, pp. 3–14. https://doi.org/doi 10.1007/BF02060279

    Article  CAS  Google Scholar 

  102. Hudon, P. and Jung, I.H., Critical evaluation and thermodynamic optimization of the CaO–P2O5 system, Metall. Mater. Trans. B, 2015, vol. 46, no. 1, pp. 494–522. https://doi.org/10.1007/s11663-014-0193-x

    Article  CAS  Google Scholar 

  103. Ding, G.H., Xie, W., Jung, I.H., Qiao, Z.Y., Du, G.W., and Cao, Z.M., Thermodynamic assessment of the MgO–P2O5 and CaO–P2O5 systems, Acta Phys.-Chim. Sin., 2015, vol. 31, no. 10, pp. 1853–1863. https://doi.org/10.3866/PKU.WHXB201508121

    Article  CAS  Google Scholar 

  104. Putlyaev, V.I. and Safronova, T.V., Chemical transformations of calcium phosphates during production of ceramic materials on their basis, Inorg. Mater., 2019, vol. 55, no. 13, pp. 1328–1341. https://doi.org/10.1134/S0020168519130028

    Article  CAS  Google Scholar 

  105. Rudin, V.N., Komarov, V.F., Melikhov, I.V., Orlov, A.Yu., Minaev, V.V., Bozhevol’nov, V.E., and Zuev, V.P., RF Patent 2122520, 1998.

  106. Safronova, T.V., Korneichuk, S.A., Putlyaev, V.I., Filippov, Ya.Yu., Shatalova, T.B., Krut’ko, V.K., Krut’ko, V.K., Musskaya, O.N., and Ulasevich, S.A., Calcium phosphate powders synthesized from hydroxyapatite and an aqueous phosphoric acid solution at molar ratios 0.35 ≤ Ca/P ≤ 1.0, Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 15 (196), pp. 8–10. https://doi.org/10.24412/FiqikSg_1Ys

  107. Safronova, T.V., Putlyaev, V.I., Knot’ko, A.V., Krut’ko, V.K., Musskaya, O.N., Ulasevich, S.A., Vorob’eva, N.A., and Telitsin, V.D., Calcium phosphate ceramic in the system Ca(PO3)2–Ca2P2O7 based on powder mixtures containing calcium hydrophosphate, Glass. Ceram., 2018, vol. 75, nos. 7–8, pp. 279–286. https://doi.org/doi 10.1007/s10717-018-0072-z

    Article  CAS  Google Scholar 

  108. Oliveira, C., Georgieva, P., Rocha, F., Ferreira, A., and de Azevedo, S.F., Dynamical model of brushite precipitation, J. Cryst. Growth, 2007, vol. 305, no. 1, pp. 201–210. https://doi.org/10.1016/j.jcrysgro.2007.04.016

    Article  CAS  Google Scholar 

  109. Barinov, S.M., Vakhrushev, I.V., Komlev, V.S., Mironov, A.V., Popov, V.K., Teterina, A.Yu., Fedotov, A.Yu., and Yarygin, K.N., 3D Printing of ceramic scaffolds for engineering of bone tissue, Inorg. Mater. Appl. Res., 2015, vol. 6, no. 4, pp. 316–322. https://doi.org/10.1134/S207511331504005X

    Article  Google Scholar 

  110. Gbureck, U., Hölzel, T., Biermann, I., Barralet, J.E., and Grover, L.M., Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping, J. Mater. Sci.: Mater. Med., 2008, vol. 19, no. 4, pp. 1559–1563. https://doi.org/10.1007/s10856-008-3373-x

    Article  CAS  Google Scholar 

  111. Monma, H., Preparation of octacalcium phosphate by the hydrolysis of α-tricalcium phosphate, J. Mater. Sci., 1980, vol. 15, no. 10, pp. 2428–2434. https://doi.org/10.1007/BF00550744

    Article  Google Scholar 

  112. Fukase, Y., Eanes, E.D., Takagp, S., Chow, L.C., and Brown, W.E., Setting reactions and compressive strengths of calcium phosphate cements, J. Dent. Res., 1990, vol. 69, no. 12, pp. 1852–1856. https://doi.org/10.1177/00220345900690121201

    Article  CAS  PubMed  Google Scholar 

  113. Friedman, C.D., Costantino, P.D., Takagi, S., and Chow, L.C., Bonesource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction, J. Biomed. Mater. Res., 1998, vol. 43, no. 4, pp. 428–432. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<428::AID-JBM10>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  114. O’hara, R., Buchanan, F., and Dunne, N., Injectable calcium phosphate cements for spinal bone repair, in Biomaterials for Bone Regeneration: Novel Techniques and Applications, Cambridge: Woodhead, 2014, pp. 26–61. https://doi.org/10.1533/9780857098104.1.26

  115. Wagh, A.S., Calcium phosphate cements, in Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications, Amsterdam: Elsevier, 2016, 2nd ed., chapter 13, pp. 165–178. https://doi.org/10.1016/B978-0-08-100380-0.00013-0

  116. Safronova, T.V., Korneichuk, S.A., Shatalova, T.B., Lukina, Yu.S., Sivkov, S.P., Filippov, Ya.Yu., Krut’ko, V.K., and Musskaya, O.N., Ca2P2O7–Ca(PO3)2 ceramic obtained by firing β-tricalcium phosphate and monocalcium phosphate monohydrate based cement stone, Glass. Ceram., 2020, vol. 77, no. 5, pp. 165–172. https://doi.org/10.1007/s10717-020-00263-y

    Article  CAS  Google Scholar 

  117. Safronova, T.V., Sadilov, I.S., Chaikun, K.V., Shatalova, T.B., and Filippov, Ya.Yu., Synthesis of monetite from calcium hydroxyapatite and monocalcium phosphate monohydrate under mechanical activation conditions, Russ. J. Inorg. Chem., 2019, vol. 64, no. 9, pp. 1088–1094. https://doi.org/10.1134/S0036023619090171

    Article  CAS  Google Scholar 

  118. Jinawath, S., Pongkao, D., Suchanek, W., and Yoshimura, M., Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate, Int. J. Inorg. Mater., 2001, vol. 3, no. 7, pp. 997–1001. https://doi.org/10.1016/S1466-6049(01)00199-4

    Article  CAS  Google Scholar 

  119. Filippov, Y.Y., Orlov, E.D., Klimashina, E.S., Evdokimov, P.V., Safronova, T.V., Putlayev, V.I., and Rau, J.V., Colloidal forming of macroporous calcium pyrophosphate bioceramics in 3D-printed molds, Bioact. Mater., 2020, vol. 5, no. 2, pp. 309–317. https://doi.org/10.1016/j.bioactmat.2020.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  120. Grover, L.M., Gbureck, U., Young, A.M., Wright, A.J., and Barralet, J.E., Temperature dependent setting kinetics and mechanical properties of β-TCP–pyrophosphoric acid bone cement, J. Mater. Chem., 2005, vol. 15, no. 46, pp. 4955–4962. https://doi.org/10.1039/B507056M

    Article  CAS  Google Scholar 

  121. Grover, L.M., Gbureck, U., Wright, A.J., and Barralet, J.E., Cement formulations in the calcium phosphate H2O–H3PO4–H4P2O7 system, J. Am. Ceram. Soc., 2005, vol. 88, no. 11, pp. 3096–3103. https://doi.org/10.1111/j.1551-2916.2005.00558.x

    Article  CAS  Google Scholar 

  122. Zhdanov, Yu.F., Khimiya i tekhnologiya polifosfatov (Chemistry and Technology of Polyphosphates), Moscow: Khimiya, 1979.

  123. Safronova, T.V., Kiselev, A.S., Shatalova, T.B., Filippov, Ya.Yu., and Gavlina, O.T., Synthesis of double ammonium’calcium pyrophosphate monohydrate Ca(NH4)2P2O7 .H2O as the precursor of biocompatible phases of calcium phosphate ceramics. Russ. Chem. Bull., 2020, vol. 69, no. 1, pp. 139–147. https://doi.org/doi 10.1007/s11172-020-2735-5

    Article  CAS  Google Scholar 

  124. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Shatalova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1184. https://doi.org/10.1134/S0020168515110096

    Article  CAS  Google Scholar 

  125. Safronova, T.V., Mukhin, E.A., Putlyaev, V.I., Knotko, A.V., Evdokimov, P.V., Shatalova, T.B., Filippov, Y.Y., Sidorov, A.V., and Karpushkin, E.A., Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application, Ceram. Int., 2017, vol. 43, no. 1, pp. 1310–1317. https://doi.org/10.1016/j.ceramint.2016.10.085

    Article  CAS  Google Scholar 

  126. Gras, P., Rey, C., André, G., Charvillat, C., Sarda, S., and Combes, C., Crystal structure of monoclinic calcium pyrophosphate dihydrate (m-CPPD) involved in inflammatory reactions and osteoarthritis, Acta Crystallogr., Sect. B: Struct. Sci., 2016, vol. 72, no. 1, pp. 96–101. https://doi.org/10.1107/S2052520615021563

    Article  CAS  Google Scholar 

  127. Gras, P., Rey, C., Marsan, O., Sarda, S., and Combes, C., Synthesis and characterisation of hydrated calcium pyrophosphate phases of biological interest, Eur. J. Inorg. Chem., 2013, vol. 2013, no. 34, pp. 5886–5895. https://doi.org/10.1002/ejic.201300955

    Article  CAS  Google Scholar 

  128. Safronova, T.V., Kurbatova, S.A., Shatalova, T.B., Knotko, A.V., Evdokimov, P.V., and Putlyaev, V.I., Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate, Inorg. Mater. Appl. Res., 2017, vol. 8, no. 1, pp. 118–125. https://doi.org/10.1134/S2075113317010348

    Article  Google Scholar 

  129. Soulié, J., Gras, P., Marsan, O., Laurencin, D., Rey, C., and Combes, C., Development of a new family of monolithic calcium (pyro) phosphate glasses by soft chemistry, Acta Biomater., 2016, vol. 41, pp. 320–327. https://doi.org/10.1016/j.actbio.2016.05.030

    Article  CAS  PubMed  Google Scholar 

  130. Ley-Ngardigal, K., Combes, C., Teychené, S., Bonhomme, C., Coelho-Diogo, C., Gras, P., Rey, C., and Biscans, B., Influence of ionic additives on triclinic calcium pyrophosphate dihydrate precipitation, Cryst. Growth Des., 2017, vol. 17, no. 1, pp. 37–50. https://doi.org/10.1021/acs.cgd.6b01128

    Article  CAS  Google Scholar 

  131. Mayen, L., Jensen, N.D., Laurencin, D., Marsan, O., Bonhomme, C., Gervais, C., and Gan, Z., A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition, Acta Biomater., 2020, vol. 103, pp. 333–345. https://doi.org/10.1016/j.actbio.2019.12.027

    Article  CAS  PubMed  Google Scholar 

  132. Fernandez, E., Planell, J.A., and Best, S.M., Precipitation of carbonated apatite in the cement system α-Ca3(PO4)2–Ca(H2PO4)2–CaCO3, J. Biomed. Mater. Res., 1999, vol. 47, no. 4, pp. 466–471. https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<466::AID-JBM2>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  133. Safronova, T.V., Shekhirev, M.A., Putlyaev, V.I., and Tret’yakov, Yu.D., Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations, Inorg. Mater., 2007, vol. 43, no. 8, pp. 901–909. https://doi.org/10.1134/S0020168507080158

    Article  CAS  Google Scholar 

  134. Safronova, T.V., Shiryaev, M.A., Putlyaev, V.I., Murashov, V.A., and Protsenko, P.V., Ceramics based on hydroxyapatite synthesized from calcium chloride and potassium hydrophosphate, Glass. Ceram., 2009, vol. 66, nos. 1–2, pp. 66–69. https://doi.org/10.1007/s10717-009-9126-6

    Article  CAS  Google Scholar 

  135. Safronova, T., Kuznetsov, A., Korneychuk, S., Putlyaev, V., and Shekhirev, M., Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO4 3−] = 1 for bioresorbable ceramics, Centr. Eur. J. Chem., 2009, vol. 7, no. 2, pp. 184–191. https://doi.org/10.2478/s11532-009-0016-0

    Article  CAS  Google Scholar 

  136. Safronova, T.V., Putlyaev, V.I., Filippov, Ya.Yu., Vladimirova, S.A., Zuev, D.M., and Cherkasova, G.S., Synthesis of calcium-phosphate powder from calcium formiate and ammonium hydrophosphate for obtaining biocompatible resorbable biphase ceramic materials, Glass. Ceram., 2017, vol. 74, nos. 5–6, pp. 185–190. https://doi.org/10.1007/s10717-017-9958-4

    Article  CAS  Google Scholar 

  137. Safronova, T.V., Putlyaev, V.I., Andreev, M.D., Filippov, Ya.Yu., Knotko, A.V., Shatalova, T.B., and Evdokimov, P.V., Synthesis of calcium phosphate powder from calcium lactate and ammonium hydrogen phosphate for the fabrication of bioceramics, Inorg. Mater., 2017, vol. 53, no. 8, pp. 859–868. https://doi.org/10.1134/S0020168517080143

    Article  CAS  Google Scholar 

  138. Safronova, T.V., Putlyaev, V.I., Knot’ko, A.V., Shatalova, T.B., and Savinova, V.Yu., Synthesis of the nanoscale calcium hydroxyapatite from calcium malate and ammonium hydrophosphate, Inorg. Mater. Appl. Res., 2019, vol. 10, no. 4, pp. 841–845. https://doi.org/10.1134/S2075113319040361

    Article  Google Scholar 

  139. Safronova, T.V., Shatalova, T.B., Filippov, Ya.Yu., Krut’ko, V.K., Musskaya, O.N., Safronov, A.S., and Toshev, O.U., Ceramics in the Ca2P2O7–Ca(PO3)2 system obtained by annealing of the samples made from hardening mixtures based on calcium citrate tetrahydrate and monocalcium phosphate monohydrate, Inorg. Mater. Appl. Res., 2020, vol. 11, no. 4, pp. 777–786. https://doi.org/10.1134/S2075113320040334

    Article  Google Scholar 

  140. Safronova, T.V., Lukina, Yu.S., Sivkov, S.P., Toshev, O.U., Kazakova, G.K., Shatalova, T.B., Filippov, Ya.Yu., Malyutin, K.V., and Azizyan-Kalandarag, Ya., Calcium pyrophosphate-based ceramics produced by firing of cement stone, Tekh. Tekhnol. Silikatov, 2020, vol. 27, no. 1, pp. 17–20.

    Google Scholar 

  141. Safronova, T.V., Kazakova, G.K., Evdokimov, P.V., Shatalova, T.B., Knotko, A.V., Korotkova, A.V., and Putlyaev, V.I., Ceramics based on calcium phosphate powder synthesized from calcium saccharate and ammonium hydrophosphate, Inorg. Mater. Appl. Res., 2016, vol. 7, no. 4, pp. 635–640. https://doi.org/10.1134/S2075113316040316

    Article  Google Scholar 

  142. Safronova, T.V., Putlyaev, V.I., Sergeeva, A.I., Kunenkov, E.V., and Tret’yakov, Yu.D., Synthesis of nanocrystalline calcium hydroxyapatite from calcium saccharates and ammonium hydrogen phosphate, Dokl. Chem., 2009, vol. 426, no. 2, pp. 118–123. https://doi.org/10.1134/S0012500809060020

    Article  CAS  Google Scholar 

  143. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass. Ceram., 2009, vol. 66, nos. 3–4, pp. 136–139. https://doi.org/10.1007/s10717-009-9130-x

    Article  CAS  Google Scholar 

  144. Safronova, T., Putlayev, V., Filippov, Y., Shatalova, T., Karpushkin, E., Larionov, D., Kazakova, G., and Shakhtarin, Y., Calcium phosphate powder synthesized from calcium acetate and ammonium hydrophosphate for bioceramics application, Ceramics, 2018, vol. 1, no. 2, pp. 375–392. https://doi.org/10.3390/ceramics1020030

    Article  CAS  Google Scholar 

  145. Safronova, T.V., Putlyaev, V.I., Kazakova, G.K., and Korneichuk, S.A., Biphase CaO–P2O5 ceramic based on powder synthesized from calcium acetate and ammonium hydrophosphate, Glass. Ceram., 2013, vol. 70, nos. 1–2, pp. 65–70. https://doi.org/10.1007/s10717-013-9510-0

    Article  CAS  Google Scholar 

  146. Safronova, T.V., Putlyaev, V.I., Kuznetsov, A.V., Ketov, N.A., and Veresov, A.G., Properties of calcium phosphate powder synthesized from calcium acetate and sodium hydrophosphate, Glass. Ceram., 2011, vol. 68, nos. 3–4, pp. 131–135. https://doi.org/10.1007/s10717-011-9338-4

    Article  CAS  Google Scholar 

  147. Safronova, T.V., Korneichuk, S.A., Putlyaev, V.I., and Boitsova, O.V., Ceramics made from calcium hydroxyapatite synthesized from calcium acetate and potassium hydrophosphate, Glass. Ceram., 2008, vol. 65, nos. 3–4, pp. 131–135. https://doi.org/10.1007/s10717-008-9033-2

    Article  CAS  Google Scholar 

  148. Vorndran, E., Klarner, M., Klammert, U., Grover, L.M., Patel, S., Barralet, J.E., and Gbureck, U., 3D powder printing of β-tricalcium phosphate ceramics using different strategies, Adv. Eng. Mater., 2008, vol. 10, no. 12, pp. B67–B71. https://doi.org/10.1002/adem.200800179

    Article  CAS  Google Scholar 

  149. Balamurugan, A., Mabrouk, K.E., Pina, S., Bousmina, M.M., and Ferreira, J.M.F., Melt-derived condensed polymorphic calcium phosphate as bone substitute material: an in vitro study, J. Am. Ceram. Soc., 2011, vol. 94, no. 9, pp. 3023–3029. https://doi.org/10.1111/j.1551-2916.2011.04487.x

    Article  CAS  Google Scholar 

  150. Nariai, H., Motooka, I., Kanaji, Y., and Tsuhako, M., Thermal behavior of alkaline-earth metal cyclo-tetraphosphates, Bull. Chem. Soc. Jpn., 1991, vol. 64, no. 10, pp. 2912–2917. https://doi.org/10.1246/bcsj.64.2912

    Article  CAS  Google Scholar 

  151. Schneider, M., Jost, K.H., and Fichtner, H., Crystal structure of the cyclotetraphosphate Ca2[P4O12] ⋅ 4H2O, Z. Anorg. Allg. Chem., 1983, vol. 500, no. 5, pp. 117–122. https://doi.org/10.1002/zaac.19835000515

    Article  CAS  Google Scholar 

  152. Schneider, M. and Jost, K.H., Chemische, thermoanalytische und röntgenorgraphische Untersuchungen zur Bildung des β-Ca2[P2O7] aus dem Ca2[P4O12] ⋅ 4H2O, Z. Anorg. Allg. Chem., 1989, vol. 576, no. 1, pp. 267–271. https://doi.org/10.1002/zaac.19895760130

    Article  CAS  Google Scholar 

  153. Kukueva, E.V., Putlyaev, V.I., Tikhonov, A.A., and Safronova, T.V., Octacalcium phosphate as a precursor for the synthesis of composite bioceramics, Inorg. Mater., 2017, vol. 53, no. 2, pp. 198–205. https://doi.org/10.7868/S0002337X17020063

    Article  Google Scholar 

  154. Brown, E.H., Lehr, J.R., Smith, J.P., and Frazier, A.W., Fertilizer materials, preparation and characterization of some calcium pyrophosphates, J. Agr. Food Chem., 1963, vol. 11, no. 3, pp. 214–222. https://doi.org/10.1021/jf60127a020

    Article  CAS  Google Scholar 

  155. Gudimov, N.V. and Belyakov, A.V., Phases obtained by mechanoactivation in ceramic based on calcium phosphate nanopowders with Ca/P= 1.25, Glass. Ceram., 2018, vol. 74, nos. 11–12, pp. 460–463. https://doi.org/10.1007/s10717-018-0016-7

    Article  CAS  Google Scholar 

  156. Bohner, M., Santoni, B.L.G., and Döbelin, N., β-Tricalcium phosphate for bone substitution: synthesis and properties, Acta Biomater., 2020, vol. 113, pp. 23–41. https://doi.org/10.1016/j.actbio.2020.06.022/

  157. Hsu, C.K., The preparation of biphasic porous calcium phosphate by the mixture of Ca(H2PO4)2 · H2O and CaCO3, Mater. Chem. Phys., 2003, vol. 80, no. 2, pp. 409–420. https://doi.org/10.1016/S0254-0584(02)00166-9

    Article  CAS  Google Scholar 

  158. Li, Y.Y., Yang, D.A., and Zhao, H., Degradation behavior of β-Ca3(PO4)2/β-Ca2P2O7 bioceramics, Key Eng. Mater., 2007, vol. 336, pp. 1650–1653. https://doi.org/10.4028/www.scientific.net/KEM.336-338.1650

    Article  Google Scholar 

  159. Safina, N.M., Safronova, T.V., and Lukin, E.S., Calcium phosphate based ceramic with a resorbable phase and low sintering temperature, Glass. Ceram., 007, vol. 64, nos. 7–8, pp. 238–243. https://doi.org/10.1007/s10717-007-0060-1

  160. Grossin, D., Rollin-Martinet, S., Estournès, C., Rossignol, F., Champion, E., Combes, C., Rey, C., Geoffroy, C., and Drouet, C., Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects, Acta Biomater., 2010, vol. 6, no. 2, pp. 577–585.https://doi.org/10.1016/j.actbio.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  161. Chanda, A., Dasgupta, S., Bose, S., and Bandyopadhyay, A., Microwave sintering of calcium phosphate ceramics, Mater. Sci. Eng., C, 2009, vol. 29, no. 4, pp. 1144–1149. https://doi.org/10.1016/j.msec.2008.09.008

    Article  CAS  Google Scholar 

  162. Barralet, J.E., Fleming, G.J.P., Campion, C., Harris, J.J., and Wright, A.J., Formation of translucent hydroxyapatite ceramics by sintering in carbon dioxide atmospheres, J. Mater. Sci., 2003, vol. 38, no. 19, pp. 3979–3993. https://doi.org/10.1023/A:1026258515285

    Article  CAS  Google Scholar 

  163. Champion, E., Sintering of calcium phosphate bioceramics, Acta Biomater., 2013, vol. 9, no. 4, pp. 5855–5875. https://doi.org/10.1016/j.actbio.2012.11.029

    Article  CAS  PubMed  Google Scholar 

  164. Fil’chenko, M.V., Solonenko, A.P., Leonova, N.N., Buyal’skaya, K.S., Savel’eva, G.G., and Golovanova, O.A., Investigation of the Ca(NO3)2–(NH4)2HPO4–NH4OH–H2O system and the mineral phase crystallizing in it, Miner.: Stroenie, Svoistva, Metody Issled., 2011, no. 3, pp. 302–305.

  165. Hildenbrand, D.L. and Giauque, W.F., Ammonium oxide and ammonium hydroxide. Heat capacities and thermodynamic properties from 15 to 300 K, J. Am. Chem. Soc., 1953, vol. 75, no. 12, pp. 2811–2818. https://pubs.acs.org/doi/pdf/10.1021/ja01108a007

    Article  Google Scholar 

  166. Siemons, W.J. and Templeton, D.H., The crystal structure of ammonium oxide, Acta Crystallogr., 1954, vol. 7, no. 2, pp. 194–198. https://doi.org/10.1107/S0365110X54000539

    Article  CAS  Google Scholar 

  167. Brown, E.H., Lehr, J.R., Frazier, A.W., and Smith, J.P., Fertilizer materials, calcium ammonium and calcium potassium pyrophosphate systems, J. Agr. Food Chem., 1964, vol. 12, no. 1, pp. 70–73. https://doi.org/10.1021/jf60131a021

    Article  CAS  Google Scholar 

  168. Hossner, L.R. and Melton, J.R., Pyrophosphate hydrolysis of ammonium, calcium, and calcium ammonium pyrophosphates in selected Texas soils, Soil Sci. Soc. Am. J., 1970, vol. 34, no. 5, pp. 801–805. https://doi.org/10.2136/sssaj1970.03615995003400050036x

    Article  CAS  Google Scholar 

  169. Mathew, M. and Schroeder, L.W., The crystal structure of calcium ammonium hydrogen pyrophosphate CaNH4HP2O7, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, vol. 33, no. 10, pp. 3025–3028. https://doi.org/10.1107/S056774087701019X

    Article  Google Scholar 

  170. Balta, D.F., Optimal conditions for extinguishing solid materials susceptible to glowing combustion, Nauchn. Vestn. NIIGD Respirator, 219, no. 4, pp. 54–64.

  171. Balonis, M., Ma, X., and Kakoulli, I., Phase relations in the calcium carbonate/ammonium phosphate system under aqueous conditions and 25°C, J. Am. Ceram. Soc., 2020, vol. 103, no. 6, pp. 3837–3850.https://doi.org/10.1111/jace.17047

    Article  CAS  Google Scholar 

  172. Wazer, J.R.V. and Holst, K.A., Structure and properties of the condensed phosphates. I. Some general considerations about phosphoric acids, J. Am. Chem. Soc., 1950, vol. 72, no. 2, pp. 639–644. https://doi.org/10.1021/ja01158a001

    Article  Google Scholar 

  173. Watters, J.I., Loughran, E.D., and Lambert, S.M., The acidity of triphosphoric acid, J. Am. Chem. Soc., 1956, vol. 78, no. 19, pp. 4855–4858. https://doi.org/10.1021/ja01600a011

    Article  CAS  Google Scholar 

  174. Watters, J.I., Sturrock, P.E., and Simonaitis, R.E., The acidity of tetraphosphoric acid, Inorg. Chem., 1963, vol. 2, no. 4, pp. 765–767. https://doi.org/10.1021/ic50008a024

    Article  CAS  Google Scholar 

  175. Safronova, T.V., Putlyaev, V.I., Ivanov, V.K., Knot’ko, A.V., and Shatalova, T.B., Powders mixtures based on ammonium pyrophosphate and calcium carbonate for preparation of biocompatible porous ceramics in the CaO–P2O5 system, Refracr. Ind. Ceram., 2016, vol. 56, no. 5, pp. 502–509. https://doi.org/10.1007/s11148-016-9877-x

    Article  CAS  Google Scholar 

  176. Jalota, S., Bhaduri, S.B., and Tas, A.C., A new rhenanite (β-NaCaPO4) and hydroxyapatite biphasic biomaterial for skeletal repair, J. Biomed. Mater. Res., 2007, vol. 80, no. 2, pp. 304–316. https://doi.org/10.1002/jbm.b.30598

    Article  CAS  Google Scholar 

  177. Suchanek, W., Yashima, M., Kakihana, M., and Yoshimura, M., β-Rhenanite (β-NaCaPO4) as weak interphase for hydroxyapatite ceramics, J. Eur. Ceram. Soc., 1998, vol. 18, no. 13, pp. 1923–1929. https://doi.org/10.1016/S0955-2219(98)00131-9

    Article  CAS  Google Scholar 

  178. Ando, J., Phase diagrams of Ca3(PO4)2–Mg3(PO4)2 and Ca3(PO4)2–CaNaPO4 systems, Bull. Chem. Soc. Jpn., 1958, vol. 31, no. 2, pp. 201–205. https://doi.org/10.1246/bcsj.31.201

    Article  CAS  Google Scholar 

  179. Safronova, T.V., Putlyaev, V.I., Filippov, Ya.Yu., Shatalova, T.B., Naberezhnyi, D.O., Nasriddinov, A.F., and Larionov, D.S., ceramics based on powder mixtures containing calcium hydrogen phosphates and sodium salts (Na2CO3, Na4P2O7, and NaPO3), Inorg. Mater., 2018, vol. 54, no. 7, pp. 724–735. https://doi.org/10.1134/S0020168518070166

    Article  CAS  Google Scholar 

  180. Millet, J.M., Sassoulas, R., and Sebaoun, A., Transitions solide ⇌ solide dans le systeme CaO–Na2O–P2O5; sous-systeme Ca3(PO4)2–CaNaPO4, J. Therm. Anal., 1983, vol. 28, no. 1, pp. 131–146. https://doi.org/10.1007/bf02105285

    Article  CAS  Google Scholar 

  181. Berak, J. and Znamierowska, T., Phase equilibria in the system CaO–Na2O–P2O5. Part II. The partial system Ca(PO3)2–Na2O–P2O5, Rocz. Chem., 1972, vol. 46, no. 10, pp. 1697–1708.

    CAS  Google Scholar 

  182. Znamierowska, T., Phase equilibriums in the system calcium oxide–potassium oxide–phosphorus (V) oxide. Part II. Partial system calcium phosphate–calcium potassium pyrophosphate–potassium metaphosphate–calcium pyrophosphate, Pol. J. Chem., 1978, vol. 52, no. 6, pp. 1127–1134.

    CAS  Google Scholar 

  183. Knowles, J.C., Phosphate based glasses for biomedical applications, J. Mater. Chem., 2003, vol. 13, no. 10, pp. 2395–2401. https://doi.org/10.1039/B307119G

    Article  CAS  Google Scholar 

  184. Stroganova, E.E., Mikhailenko, N.Yu., and Moroz, O.A., Glass-based biomaterials: present and future (a review), Glass. Ceram., 2003, vol. 60, nos. 9–10, pp. 313–319. https://doi.org/10.1023/B:GLAC.0000008235.49161.32

    Article  Google Scholar 

  185. Morey, G.W., The system H2O–NaPO3, J. Am. Chem. Soc., 1953, vol. 75, no. 23, pp. 5794–5797. https://doi.org/10.1021/ja01119a008

    Article  CAS  Google Scholar 

  186. Wendrow, B. and Kobe, K.A., The alkali orthophosphates. Phase equilibria in aqueous solution, Chem. Rev., 1954, vol. 54, no. 6, pp. 891–924. https://doi.org/doi 10.1021/cr60172a001

    Article  CAS  Google Scholar 

  187. Sumich, A.I. and Eshchenko, G.S., Composition of phosphates formed by the interaction of liquid glass with orthophosphoric acid solutions, Proc. BSTU, 2013, no. 3 (159), pp. 90–93. https:// elib.belstu.by/handle/123456789/12143.

  188. Nikandrov, M.I., Nikandrov, I.S., and Krasnov, Yu.V., Crystallization of mono-, di-, and trisodium phosphates, Tr. NGTU im. R.E. Alekseeva, 2010, no. 3, pp. 249–254. https://cyberleninka.ru/article/n/issledovanie-kristallizatsii-odno-dvuh-i-trehzameschennyh-fosfatov-natriya

  189. Arifuzzaman, S.M. and Rohani, S., Experimental study of brushite precipitation, J. Cryst. Growth, 2004, vol. 267, nos. 3–4, pp. 624–634. https://doi.org/10.1016/j.jcrysgro.2004.04.024

    Article  CAS  Google Scholar 

  190. Jokić, B., Mitrić, M., Radmilović, V., Drmanić, S., Petrović, R., and Janaćković, D., Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method, Ceram. Int., 2011, vol. 37, no. 1, pp. 167–173. https://doi.org/10.1016/j.ceramint.2010.08.032

    Article  CAS  Google Scholar 

  191. Safronova, T.V., Reshotka, D.S., Putlyaev, V.I., Lukin, E.S., and Ivanov, V.K., Phase composition of powdered material based on calcium hydroxyapatite and sodium dihydrophosphate, Glass. Ceram., 2009, vol. 66, nos. 7–8, pp. 293–295. https://doi.org/10.1007/s10717-009-9186-7

    Article  CAS  Google Scholar 

  192. Safronova, T.V., Putlyaev, V.I., Knotko, A.V., Filippov, Ya.Yu., Klimashina, E.S., Ryzhov, A.P., and Saidzhonov, B.M., Powder mixtures based on calcium hydroxyapatite and sodium salts, Inorg. Mater. Appl. Res., 2018, vol. 9, no. 4, pp. 726–731. https://doi.org/10.1134/S2075113318040342

    Article  Google Scholar 

  193. Safronova, T.V., Putlyaev, V.I., Filippov, Ya.Yu., Larionov, D.S., Evdokimov, P.V., Averina, A.E., Klimashina, E.S., and Ivanov, V.K., Porous ceramic based on calcium pyrophosphate, Refract. Ind. Ceram., 2015, vol. 56, no. 1, pp. 43–47. https://doi.org/10.1007/s11148-015-9782-8

    Article  CAS  Google Scholar 

  194. Song, Y., Feng, Z., and Wang, T., In situ study on the curing process of calcium phosphate bone cement, J. Mater. Sci.: Mater. Med., 2007, vol. 18, no. 6, pp. 1185–1193. https://doi.org/10.1007/s10856-007-0138-x

    Article  CAS  Google Scholar 

  195. Cahyanto, A., Maruta, M., Tsuru, K., Matsuya, S., and Ishikawa, K., Fabrication of bone cement that fully transforms to carbonate apatite, Dent. Mater. J., 2015, vol. 34, no. 3, pp. 394–401. https://doi.org/10.4012/dmj.2014-328

    Article  CAS  PubMed  Google Scholar 

  196. Doi, Y., Shimizu, Y., Moriwaki, Y., Aga, M., Iwanaga, H., Shibutani, T., and Iwayama, Y., Development of a new calcium phosphate cement that contains sodium calcium phosphate, Biomaterials, 2001, vol. 22, no. 8, pp. 847–854. https://doi.org/10.1016/S0142-9612(00)00248-9

    Article  CAS  PubMed  Google Scholar 

  197. Mayen, L., Jensen, N.D., Desbord, M., Laurencin, D., Gervais, C., Bonhomme, C., Smith, M.E., Porcher, F., Elkaim, E., Charvillat, C., Gras, P., Rey, C., Soulie, J., and Combes, C., Advances in the synthesis and structure of α-canaphite: a multitool and multiscale study, CrystEngComm, 2020, vol. 22, no. 18, pp. 3130–3143. https://doi.org/10.1039/D0CE00132E

    Article  CAS  Google Scholar 

  198. Safronova, T.V., Secheiko, P.A., and Putlyaev, V.I., Multiphase ceramics based on powders synthesized from sodium pyrophosphate and soluble calcium salts using mechanical activation, Glass. Ceram., 2012, vol. 69, nos. 7–8, pp. 276–282. https://doi.org/10.1007/s10717-012-9462-9

    Article  CAS  Google Scholar 

  199. Driessens, F.C.M., Ramselaar, M.M.A., Schaeken, H.G., Stols, A.L.H., Van Mullem, P.J., and De Wijn, J.R., Chemical reactions of calcium phosphate implants after implantation in vivo, J. Mater. Sci.: Mater. Med., 1992, vol. 3, no. 6, pp. 413–417. https://doi.org/10.1007/BF00701237

    Article  CAS  Google Scholar 

  200. Kannan, S., Ventura, J.M., Lemos, A.F., Barba, A., and Ferreira, J.M.F., Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics, Ceram. Int., 2008, vol. 34, no. 1, pp. 7–13. https://doi.org/10.1016/j.ceramint.2006.07.007

    Article  CAS  Google Scholar 

  201. Schaeken, H.G., Driessens, F.C.M., and Verbeeck, R.M.H., Solid solutions between β‑Ca3(PO4)2 and sodium-containing whitlockite, Z. Anorg. Allg. Chem., 1983, vol. 505, no. 10, pp. 48–52. https://doi.org/10.1002/zaac.19835051006

    Article  CAS  Google Scholar 

  202. Ando, J. and Matsuno, S., Ca3(PO4)2–CaNaPO4 system, Bull. Chem. Soc. Jpn., 1968, vol. 41, no. 2, pp. 342–347. https://doi.org/10.1246/bcsj.41.342

    Article  CAS  Google Scholar 

  203. Celotti, G. and Landi, E., A misunderstood member of the nagelschmidtite family unveiled: structure of Ca5Na2(PO4)4 from X-ray powder diffraction data, J. Eur. Ceram. Soc., 2003, vol. 23, no. 6, pp. 851–858. https://doi.org/10.1016/S0955-2219(02)00211-X

    Article  CAS  Google Scholar 

  204. Evdokimov, P.V., Putlyaev, V.I., Ivanov, V.K., Garshev, A.V., Shatalova, T.B., Orlov, N.K., Klimashina, E.S., and Safronova, T.V., Phase equilibria in the tricalcium phosphate-mixed calcium sodium (potassium) phosphate systems, Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1219–1227. https://doi.org/10.1134/S0036023614110084

    Article  CAS  Google Scholar 

  205. Filippov, Ya.Yu., Vlasikhina, A.A., Klimashina, E.S., Evdokimov, P.V., and Putlyaev, V.I., Creation of three-dimensional ceramic structures with prescribed architecture based on the system Ca2P2O7–CaNa2P2O7, Glass. Ceram., 2019, vol. 75, nos. 11–12, pp. 446–450. https://doi.org/10.1007/s10717-019-00109-2

    Article  CAS  Google Scholar 

  206. Lin, F.N., Lin, C.C., Lu, C.M., Lui, H.C., and Sun, J.S., Mechanical properties histological evaluation of sintered beta-Ca2P2O7 with Na4P2O7 ⋅ 10H2O addition, Biomaterials, 1995, vol. 16, no. 10, pp. 793–802. https://doi.org/10.1016/0142-9612(95)99642-Y

    Article  CAS  PubMed  Google Scholar 

  207. Abrahams, I., Hawkes, G.E., and Knowles, J., Phosphorus speciation in sodium–calcium–phosphate ceramics, J. Chem. Soc., Dalton Trans., 1997, no. 9, pp. 1483–1484. https://doi.org/10.1039/A701029J

  208. Scheicher, H. and Wendler, E., US Patent 4917702, 1990. https:// patents.google.com/patent/US4917702A/en

  209. Suchanek, W., Yashima, M., Kakihana, M., and Yoshimura, M., Hydroxyapatite ceramics with selected sintering additives, Biomaterials, 1997, vol. 18, no. 13, pp. 923–933. https://doi.org/10.1016/S0142-9612(97)00019-7

    Article  CAS  PubMed  Google Scholar 

  210. Halouani, R., Bernache-Assolant, D., Champion, E., and Ababou, A., Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics, J. Mater. Sci.: Mater. Med., 1994, vol. 5, no. 8, pp. 563–568. https://doi.org/10.1007/BF00124890

    Article  CAS  Google Scholar 

  211. Bakunova, N.V., Komlev, V.S., Fedotov, A.Y., Fadeeva, I.V., Smirnov, V.V., Shvorneva, L.I., Gurin, A.N., and Barinov, S.M., A method of fabrication of porous carbonated hydroxyapatite scaffolds for bone tissue engineering, Powder Metall. Prog., 2008, vol. 8, no. 4, pp. 336–342. http://www.imr.saske.sk/pmp/issue/4-2008/PMP_Vol08_No4_p336-342.pdf

  212. Lakhkar, N.J., Lee, I.-H., Kim, H.-W., Salih, V., Wall, I.B., and Knowles, J.C., Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses, Adv. Drug Delivery Rev., 2013, vol. 65, no. 4, pp. 405–420. https://doi.org/10.1016/j.addr.2012.05.015

    Article  CAS  Google Scholar 

  213. McBride, E.D., Absorbable metal in bone surgery: a further report on the use of magnesium alloys, J. Am. Med. Assoc., 1938, vol. 111, no. 27, pp. 2464–2467. https://doi.org/10.1001/jama.1938.02790530018007

    Article  CAS  Google Scholar 

  214. Walker, J., Shadanbaz, S., Woodfield, T.B., Staiger, M.P., and Dias, G.J., Magnesium biomaterials for orthopedic application: a review from a biological perspective, J. Biomed. Mater. Res., 2014, vol. 102, no. 6, pp. 1316–1331. https://doi.org/10.1002/jbm.b.33113

    Article  CAS  Google Scholar 

  215. Tamimi, F., Le Nihouannen, D., Bassett, D.C., Ibasco, S., Gbureck, U., Knowles, J., Wright, A., Flynn, A., Komarova, S.V., and Barralet, J.E., Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions, Acta Biomater., 2011, vol. 7, no. 6, pp. 2678–2685. https://doi.org/10.1016/j.actbio.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  216. Waselau, M., Samii, V.E., Weisbrode, S.E., Litsky, A.S., and Bertone, A.L., Effects of a magnesium adhesive cement on bone stability and healing following a metatarsal osteotomy in horses, Am. J. Vet. Res., 2007, vol. 68, no. 4, pp. 370–378. https://doi.org/10.2460/ajvr.68.4.370

    Article  CAS  PubMed  Google Scholar 

  217. Moseke, C., Saratsis, V., and Gbureck, U., Injectability and mechanical properties of magnesium phosphate cements, J. Mater. Sci.: Mater. Med., 2011, vol. 22, no. 12, pp. 2591–2598. https://doi.org/10.1007/s10856-011-4442-0

    Article  CAS  Google Scholar 

  218. Ostrowski, N., Roy, A., and Kumta, P.N., Magnesium phosphate cement systems for hard tissue applications: a review, ACS Biomater. Sci. Eng., 2016, vol. 2, no. 7, pp. 1067–1083. https://doi.org/10.1021/acsbiomaterials.6b00056

    Article  CAS  PubMed  Google Scholar 

  219. Goldberg, M.A., Smirnov, V.V., Antonova, O.S., Tut’kova, Yu.B., Obolkina, T.O., Khairutdinova, D.R., Krokhicheva, P.A., Barinov, S.M., and Komlev, V.S., Ceramic materials in the tricalcium phosphate–trimagnesium phosphate system, Inorg. Mater., 2020, vol. 56, no. 3, pp. 314–320. https://doi.org/10.1134/S0020168520030036

    Article  CAS  Google Scholar 

  220. Kazakova, G., Safronova, T., Putlayev, V., and Secheyko, P., Synthetic struvite and newberyite powders for resorbable ceramic materials, Advanced Metals, Ceramics and Composites: XII China–Russia Symp. on Advanced Materials and Technologies (CRSAMT2013), Kunming: Yunnan Science and Technology, 2013, vol. 1, pp. 209–211.

  221. Kazakova, G.K., Safronova, T.V., Putlyaev, V.I., Shatalova, T.B., and Knot’ko, A.V., Synthesis and properties of powders for the preparation of bioresorbable ceramics containing calcium and magnesium orthophosphates, III Vserossiiskaya nauchnaya konferentsiya “Uspekhi sinteza i kompeksoobrazovaniya” (III All-Russia Sci. Conf. Advances in Synthesis and Complexation), 2014, p. 100.

  222. Abbona, F., Lundager, MadsenH.E.L., and Boistelle, R., The final phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentration, J. Cryst. Growth, 1988, vol. 89, no. 4, pp. 592–602. https://doi.org/10.1016/0022-0248(88)90223-0

    Article  CAS  Google Scholar 

  223. McCarthy, W.J., Smith, D.M.A., Adamowicz, L., Saint-Martin, H., and Ortega-Blake, I., An ab initio study of the isomerization of Mg- and Ca-pyrophosphates, J. Am. Chem. Soc., 1998, vol. 120, no. 24, pp. 6113–6120. https://doi.org/10.1021/ja972715g

    Article  CAS  Google Scholar 

  224. Generosi, A., Smirnov, V.V., Rau, J.V., Rossi Albertini, V., Ferro, D., and Barinov, S.M., Phase development in the hardening process of two calcium phosphate bone cements: an energy dispersive X-ray diffraction study, Mater. Res. Bull., 2008, vol. 43, no. 3, pp. 561–571. https://doi.org/10.1016/j.materresbull.2007.04.016

    Article  CAS  Google Scholar 

  225. Bensalem, A., Ahluwalia, M., Vijayaraghavan, T.V., and Ko, Y.H., Synthesis of amorphous MgHPO4 · x(R) [R = ethanol; ethylene glycol] in anhydrous media, Mater. Res. Bull., 1997, vol. 32, no. 11, pp. 1473–1483. https://doi.org/10.1016/S0025-5408(97)00129-3

    Article  CAS  Google Scholar 

  226. Boskey, A.L. and Posner, A.S., Magnesium stabilization of amorphous calcium phosphate: a kinetic study, Mater. Res. Bull., 1974, vol. 9, no. 7, pp. 907–916. https://doi.org/10.1016/0025-5408(74)90169-X

    Article  CAS  Google Scholar 

  227. Podhajska-Kazmierczak, T., Phase equilibria in ternary system MgO–Na2O–P2O5. The partial system MgO–Mg3(PO4)2–Mg4Na(PO4)3–Na4P2O7, Thermochim. Acta, 2002, vol. 385, nos. 1–2, pp. 163–169. https://doi.org/10.1016/S0040-6031(01)00715-8

    Article  CAS  Google Scholar 

  228. Arstila, H., Vedel, E., Hupa, L., and Hupa, M., Factors affecting crystallization of bioactive glasses, J. Eur. Ceram. Soc., 2007, vol. 27, nos. 2–3, pp. 1543–1546. https://doi.org/10.1016/j.jeurceramsoc.2006.04.017

    Article  CAS  Google Scholar 

  229. Barradas, A.M., Yuan, H., van Blitterswijk, C.A., and Habibovic, P., Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms, Eur. Cell. Mater., 2011, vol. 21, pp. 407–429. https://doi.org/10.22203/eCM.v021a31

    Article  CAS  PubMed  Google Scholar 

  230. Hannink, G. and Arts, J.J.C., Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?, Injury, 2011, vol. 42, pp. S22–S25. https://doi.org/10.1016/j.injury.2011.06.008

    Article  PubMed  Google Scholar 

  231. Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell, J.A., Clark, S.G., Wheeler, M.B., Jamison, R.D., and Wagoner Johnson, A.J., The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials, 2007, vol. 28, pp. 45–54. https://doi.org/10.1016/j.biomaterials.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  232. Doernberg, M.C., Rechenberg, B., and Bohner, M., In vivo behavior of calcium phosphate scaffolds with four different pore sizes, Biomaterials, 2006, vol. 27, pp. 5186–5198. https://doi.org/10.1016/j.biomaterials.2006.05.051

    Article  CAS  Google Scholar 

  233. Šupová, M., Substituted hydroxyapatites for biomedical applications: a review, Ceram. Int., 2015, vol. 41, no. 8, pp. 9203–9231. https://doi.org/10.1016/j.ceramint.2015.03.316

    Article  CAS  Google Scholar 

  234. Albrektsson, T. and Johansson, C., Osteoinduction, osteoconduction and osseointegration, Eur. Spine J., 2001, vol. 10, no. 2, pp. S96–S101. https://doi.org/10.1007/s005860100282

    Article  PubMed  PubMed Central  Google Scholar 

  235. Barinov, S.M. and Komlev, V.S., Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration, Inorg. Mater., 2016, vol. 52, no. 4, pp. 339–346. https://doi.org/10.7868/S0002337X16040023

    Article  CAS  Google Scholar 

  236. Tikhonov, A.A., Evdokimov, P.V., Putlyaev, V.I., Safronova, T.V., and Filippov, Ya.Yu., On the choice of the architecture of osteoconductive bioceramic implants, Inorg. Mater. Appl. Res., 2019, vol. 10, no. 1, pp. 242–247. https://doi.org/10.1134/S2075113319010325

    Article  Google Scholar 

  237. Studart, A.R., Gonzenbach, U.T., Tervoort, E., and Gauckler, L.J., Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., 2006, vol. 89, no. 6, pp. 1771–1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x

    Article  CAS  Google Scholar 

  238. Belyakov, A.V., Lukin, E.S., Safronova, T.V., Safina, M.N., and Putlyaev, V.I., Porous materials made from calcium phosphates, Glass. Ceram., 2008, vol. 65, nos. 9–10, pp. 337–339. https://doi.org/10.1007/s10717-009-9086-x

    Article  CAS  Google Scholar 

  239. Khallok, H., Elouahli, A., Ojala, S., Keiski, R.L., Kheribech, A., and Hatim, Z., Preparation of biphasic hydroxyapatite/β-tricalcium phosphate foam using the replication technique, Ceram. Int., 2020, vol. 46, pp. 22581–22591. https://doi.org/10.1016/j.ceramint.2020.06.019

    Article  CAS  Google Scholar 

  240. Hayashi, K., Kishida, R., Tsuchiya, A., and Ishikawa, K., Granular honeycombs composed of carbonate apatite, hydroxyapatite, and β-tricalcium phosphate as bone graft substitutes: effects of composition on bone formation and maturation, ACS Appl. Bio Mater., 2020, vol. 3, no. 3, pp. 1787–1795. https://doi.org/10.1021/acsabm.0c00060

    Article  CAS  Google Scholar 

  241. Hayashi, K., Kishida, R., Tsuchiya, A., and Ishikawa, K., Carbonate apatite micro-honeycombed blocks generate bone marrow-like tissues as well as bone, Adv. Biosyst., 2019, vol. 3, no. 12, paper 1900140. https://doi.org/doi 10.1002/adbi.201900140

  242. Hollister, S.J., Porous scaffold design for tissue engineering, Nat. Mater., 2005, vol. 4, no. 7, pp. 518–524. https://doi.org/10.1038/nmat1421

    Article  CAS  PubMed  Google Scholar 

  243. Zadpoor, A.A., Bone tissue regeneration: the role of scaffold geometry, Biomater. Sci., 2015, vol. 3, no. 2, pp. 231–245. https://doi.org/10.1039/C4BM00291A

    Article  CAS  PubMed  Google Scholar 

  244. Shirazi, S.F.S., Gharehkhani, S., Mehrali, M., Yarmand, H., Metselaar, H.S.C., Kadri, N.A., and Osman, N.A.A., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Sci. Technol. Adv. Mater., 2015, vol. 16, no. 3, paper 033502. https://doi.org/10.1088/1468-6996/16/3/033502

  245. Li, X., Yuan, Y., Liu, L., Leung, Y.S., Chen, Y., Guo, Y., Chai, Y., and Chen, Y., 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration, Bio-Des. Manuf., 2020, vol. 3, no. 1, pp. 15–29. https://doi.org/10.1007/s42242-019-00056-5

    Article  CAS  Google Scholar 

  246. Jariwala, S.H., Lewis, G.S., Bushman, Z.J., Adair, J.H., and Donahue, H.J., 3D printing of personalized artificial bone scaffolds, 3D Print. Addit. Manuf., 2015, vol. 2, no. 2, pp. 56–64. https://doi.org/10.1089/3dp.2015.0001

    Article  Google Scholar 

  247. Wu, C., Fan, W., Zhou, Y., Luo, Y., Gelinsky, M., Chang, J., and Xiao, Y., 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis, J. Mater. Chem., 2012, vol. 22, no. 24, pp. 12288–12295. https://doi.org/10.1039/C2JM30566F

    Article  CAS  Google Scholar 

  248. Zhou, J., Gao, C., Feng, P., Xiao, T., Shuai, C., and Peng, S., Calcium sulfate bone scaffolds with controllable porous structure by selective laser sintering, J. Porous Mater., 2015, vol. 22, no. 5, pp. 1171–1178. https://doi.org/10.1007/s10934-015-9993-x

    Article  CAS  Google Scholar 

  249. Zhou, Z., Buchanan, F., Mitchell, C., and Dunne, N., Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique, Mater. Sci. Eng., C, 2014, vol. 38, pp. 1–10. https://doi.org/10.1016/j.msec.2014.01.027

    Article  CAS  Google Scholar 

  250. Suwanprateeb, J., Suvannapruk, W., and Wasoontararat, K., Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material, J. Mater. Sci.: Mater. Med., 2010, vol. 21, no. 2, pp. 419–429. https://doi.org/10.1007/s10856-009-3883-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, scientific project no. 19-13-50224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V. Inorganic Materials for Regenerative Medicine. Inorg Mater 57, 443–474 (2021). https://doi.org/10.1134/S002016852105006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852105006X

Keywords:

Navigation