Skip to main content
Log in

Isobaric–Isothermal Polyhedra of Solid Solutions in the Li–Ni–Mn–Co–O System

  • Published:
Inorganic Materials Aims and scope

Abstract

Isobaric–isothermal composition polyhedra of solid solutions existing in the Li–Ni–Mn–Co–O system at a temperature of 800°C and oxygen partial pressures in the range 20–100 kPa are constructed in the Li–Ni–Mn–Co tetrahedron using fragmentary experimental data available. Phase equilibria involving LNMCO1, LNMCO2, LNMCO3, and LNMCO4 solid solutions, with the rock salt (Li(Ni,Mn,Co)O), α‑NaFeO2 ferrite (Li(Ni,Mn,Co)O2), manganite (Li2MnO3), and spinel (Li(Ni,Mn,Co)2O4) structures, respectively, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 2001, vol. 30, no. 7, pp. 642–643. https://doi.org/10.1246/cl.2001.642

    Article  Google Scholar 

  2. Lu, Z., MacNeil, D.D., and Dahn, J.R., Layered Li[NixCo1 – 2xMnx]O2 cathode materials for lithium-ion batteries, Electrochem. Solid-State Lett., 2001, vol. 4, no. 12, pp. A200–A203. https://doi.org/10.1149/1.1413182

    Article  CAS  Google Scholar 

  3. Brown, C.R., McCalla, E., Watson, C., and Dahn, J.R., Combinatorial study of the Li–Ni–Mn–Co oxide pseudoquaternary system for use on Li-ion battery materials research, ACS Comb. Sci., 2015, vol. 17, pp. 381–391. https://doi.org/10.1021/acscombsci.5b00048

    Article  CAS  PubMed  Google Scholar 

  4. Thackeray, M.M., Kang, S.-H., Johnson, C.S., Vaughey, J.T., Benedek, R., and Hackney, S.A., Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium batteries, J. Mater. Chem., 2007, vol. 17, no. 30, pp. 3112–3125. https://doi.org/10.1039/B702425H

    Article  CAS  Google Scholar 

  5. Yang, T., Wang, D., Shi, X., Han, Y., Zhang, H., Song, D., and Zhang, L., Design and property investigations of manganese-based cathode material LiδNi0.25–zMn0.75–z-Co2zOy (0 ≤ δ ≤ 1.75) for lithium-ion batteries, Electrochim. Acta, 2019, vol. 298, pp. 595–517. https://doi.org/10.1016/j.electacta.2018.12.111

    Article  CAS  Google Scholar 

  6. Kim, Y., Effect of metal composition on the structure of layer-structured cathode materials for Li-ion batteries, Appl. Phys. A, 2020, vol. 126, paper 556. https://doi.org/10.1007/s00339-020-03744-7

  7. Houchins, G. and Viswanathan, V., Towards ultra low cobalt cathodes: a high fidelity computational phase search of layered Li–Ni–Mn–Co oxides, J. Electrochem. Soc., 2020, vol. 167, paper 070506. https://doi.org/10.1149/2.0062007JES

  8. Nipan, G.D. and Klyndyuk, A.I., Solid solutions in the Li–Ni–Mn–Co–O system, Inorg. Mater., 2019, vol. 55, no. 2, pp. 135–142. https://doi.org/10.1134/S0020168519020080

    Article  CAS  Google Scholar 

  9. Abe, Y., Meguro, T., Oyamatsu, S., Yokoyama, T., and Komeya, K., Formation region of monophase with cubic spinel-type oxides in Mn–Co–Ni ternary system, J. Mater. Sci., 1999, vol. 34, pp. 4639–4644. https://doi.org/10.1023/A:1004633610231

    Article  CAS  Google Scholar 

  10. Antolini, E., LixNi1–xO (0 < x ≤ 0.3) solid solutions: formation, structure and transport properties, Mater. Chem. Phys., 2003, vol. 82, no. 3, pp. 937–948. https://doi.org/10.1016/j.matchemphys.2003.08.006

    Article  CAS  Google Scholar 

  11. Balakirev, V.F., Barkhatov, V.P., Golikov, Yu.V., and Maizel’, S.G., Manganity: ravnovesnye i nestabil’nye sostoyaniya (Manganites: Equilibrium and Nonequilibrium States), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2000.

  12. McCalla, E., Rowe, A.W., Shunmugasundaram, R., and Dahn, J.R., Structural study of the Li–Mn–Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries, Chem. Mater., 2013, vol. 25, pp. 989–999. https://doi.org/10.1021/cm4001619

    Article  CAS  Google Scholar 

  13. Kim, H.-Y., Shin, J., Jang, I.-C., and Ju, Y.-W., Hydrothermal synthesis of three-dimensional perovskite NiMnO3 oxide and application in supercapacitor electrode, Energies, 2020, vol. 13, paper 36. https://doi.org/10.3390/en13010036

  14. Kan, W.H., Huq, A., and Manthiram, A., Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system, Chem. Mater., 2016, vol. 28, no. 6, pp. 1832–1837. https://doi.org/10.1021/acs.chemmater.5b04994

    Article  CAS  Google Scholar 

  15. Buzanov, G.A., Nipan, G.D., Zhizhin, K.Yu., and Kuznetsov, N.T., Phase equilibria involving solid solutions in the Li–Mn–O system, Russ. J. Inorg. Chem., 2017, vol. 62, no. 5, pp. 551–557. https://doi.org/10.1134/S0036023617050059

    Article  CAS  Google Scholar 

  16. Wang, L., Li, J., He, X., Pu, W., Wan, C., and Jiang, C., Recent advances in layered LiNixCoyMn1–xyO2 cathode materials for lithium ion batteries, J. Solid State Electrochem., 2009, vol. 13, no. 8, pp. 1157–1164. https://doi.org/https://doi.org/10.1007/s10008-008-0671-7

    Article  CAS  Google Scholar 

  17. Noh, H.J., Youn, S., Yoon, C.S., and Sun, Y.K., Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 2013, vol. 233, pp. 121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  18. Zheng, J., Liu, T., Hu, Z., Wie, Y., Song, X., Ren, Y., Wang, W., Rao, M., Lin, Y., Chen, Z., Lu, J., Wang, C., Amine, K., and Pan, F., Tuning of thermal stability in layered Li(NixMnyCoz)O2, J. Am. Chem. Soc., 2016, vol. 138, no. 40, pp. 13326–13334. https://doi.org/10.1021/jacs.6b07771

    Article  CAS  PubMed  Google Scholar 

  19. Julien, C.M., Mauger, A., Zaghib, K., and Groult, H., Optimization of layered cathode materials for lithium-ion batteries, Materials, 2016, vol. 9, paper 595. https://doi.org/10.3390/ma9070595

  20. Xiao, Y., Liu, T., Liu, J., He, L., Chen, J., Zhang, J., Luo, P., Lu, H., Wang, R., Zhu, W., Hu, Z., Teng, G., Xin, C., Zheng, J., Liang, T., Wang, F., Chen, Y., Huang, Q., Pan, F., and Chen, H., Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials, Nano Energy, 2018, vol. 49, pp. 77–85. https://doi.org/10.1016/j.nanoen.2018.04.020

    Article  CAS  Google Scholar 

  21. Li, J., Shunmugasundaram, R., Doig, R., and Dahn, J.R., In-situ X-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials, Chem. Mater., 2016, vol. 28, no. 1, pp. 162–171. https://doi.org/10.1021/acs.chemmater.5b03500

    Article  CAS  Google Scholar 

  22. McCalla, E., Lowartz, C.M., Brown, C.R., and Dahn, J.R., Formation of layered–layered composites in the Li–Co–Mn pseudoternary system during slow cooling, Chem. Mater., 2013, vol. 25, pp. 912–918. https://doi.org/10.1021/cm304002b

    Article  CAS  Google Scholar 

  23. Geder, J., Song, J.H., Kang, S.H., and Yu, D.Y.W., Thermal stability of lithium-rich manganese-based cathode, Solid State Ionics, 2014, vol. 268, pp. 242–246. https://doi.org/10.1016/j.ssi.2014.05.020

    Article  CAS  Google Scholar 

  24. Kang, S.H. and Thackeray, M.M., Enhancing the rate capability of high capacity xLi2MnO3 ⋅ (1 – x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment, Electrochem. Commun., 2009, vol. 11, pp. 748–751. https://doi.org/10.1016/j.elecom.2009.01.025

    Article  CAS  Google Scholar 

  25. Lobo, L.S. and Kumar, A.R., Synthesis, structural and electrical properties of Li1.2Mn0.54Ni0.13Co0.13O2 synthesised by sol–gel method, Mater. Res. Innovations, 2017, vol. 21, no. 4, pp. 249–256. https://doi.org/10.1080/14328917.2016.1210876

    Article  CAS  Google Scholar 

  26. Ma, X., He, H., Sun, Y., and Zhang, Y., Synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 by sol–gel method and its electrochemical properties as cathode materials for lithium-ion batteries, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 2, pp. 16665–16671. https://doi.org/10.1007/s10854-017-7578-y

    Article  CAS  Google Scholar 

  27. Barton, P.T., Premchand, Y.D., Chater, P.A., Seshadri, R., and Rosseinsky, M.J., Chemical inhomogeneity, short-range order, and magnetism in the LiNiO2–NiO solid solution, Chem.–Eur. J., 2013, vol. 19, no. 43, pp. 14521–14531. https://doi.org/10.1002/chem.201301451

    Article  CAS  PubMed  Google Scholar 

  28. McCalla, E., Li, J., Rowe, A.W., and Dahn, J.R., The negative impact of layered-layered composites on the electrochemistry of Li–Mn–Ni–O electrodes for lithium-ion batteries, J. Electrochem. Soc., 2014, vol. 161, no. 4, pp. A606–A613. https://doi.org/10.1149/2.083404jes

    Article  CAS  Google Scholar 

  29. Shizuka, K., Kobayashi, T., Okahara, K., Okamoto, K., Kanzaki, S., and Kanno, R., Characterization of Li1+yNixCo1–2xMnxO2 positive active materials for lithium ion batteries, J. Power Sources, 2005, vol. 146, nos. 1–2, pp. 589–593. https://doi.org/10.1016/j.jpowsour.2005.03.046

    Article  CAS  Google Scholar 

  30. Kim, J.-M., Kumagai, N., Kadoma, Y., and Yashiro, H., Synthesis and electrochemical properties of lithium non-stoichiometric Li1+x(Ni1/3Co1/3Mn1/3)O2+δ prepared by a spray drying method, J. Power Sources, 2007, vol. 174, no. 2, pp. 473–479. https://doi.org/10.1016/j.jpowsour.2007.06.183

    Article  CAS  Google Scholar 

  31. Zhang, Q., Peng, T., Zhan, D., and Hu, X., Synthesis and electrochemical property of xLi2MnO3 ⋅ (1 – x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3, J. Power Sources, 2014, vol. 250, pp. 40–49. https://doi.org/10.1016/j.jpowsour.2013.10.139

    Article  CAS  Google Scholar 

  32. Saroha, R., Gupta, A., and Panwar, A.K., Electrochemical performances of Li-rich layered–layered Li2MnO3–LiMnO2 solid solutions as cathode material for lithium-ion batteries, J. Alloys Compd., 2017, vol. 696, pp. 580–589. https://doi.org/10.1016/j.jallcom.2016.11.199

    Article  CAS  Google Scholar 

  33. Matsunaga, T., Komatsu, H., Shimoda, K., Minato, T., Yonemura, M., Kamiyama, T., Kobayashi, S., Kato, T., Hirayama, T., Ikuhara, Y., Arai, H., Ukyo, Y., Uchimoto, Y., and Ogumi, Z., Structural understanding of superior battery properties of partially Ni-doped Li2MnO3 as cathode material, J. Phys. Chem. Lett., 2016, vol. 7, pp. 2063–2067. https://doi.org/10.1021/acs.jpclett.6b00587

    Article  CAS  PubMed  Google Scholar 

  34. Jarvis, K.A., Deng, Z., Allard, L.F., Manthiram, A., and Ferreira, P.J., Atomic structure of a lithium-rich layered oxide material or lithium-ion batteries: evidence of a solid solution, Chem. Mater., 2011, vol. 23, no. 16, pp. 3614–3621. https://doi.org/10.1021/cm200831c

    Article  CAS  Google Scholar 

  35. Ozawa, K., Nakao, Y., Mochiku, T., Cheng, Z., Wang, L., Iwai, H., Tsuchiya, Y., Fujii, H., and Igawa, N., Electrochemical characteristics of layered Li1.95Mn0.9Co0.15O3 (C2/m) as a lithium-battery cathode, J. Electrochem. Soc., 2012, vol. 159, no. 3, pp. A300–A304. https://doi.org/10.1149/2.079203jes

    Article  CAS  Google Scholar 

  36. Ye, D., Wang, B., Chen, Y., Han, G., Zhang, Z., Hulcova-Jurcakova, D., Zou, J., and Wang, L., Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, pp. 18767–18774. https://doi.org/10.1039/c4ta03692a

    Article  CAS  Google Scholar 

  37. Kumagai, N., Kim, J.-M., Tsuruta, S., Kadoma, Y., and Ui, K., Structural modification of Li[Li0.27Co0.20Mn0.53]O2 by lithium extraction and its electrochemical property as the positive electrode for Li-ion batteries, Electrochim. Acta, 2008, vol. 53, pp. 5287–5293. https://doi.org/10.1016/j.electacta.2008.01.044

    Article  CAS  Google Scholar 

  38. Sun, Y., Shiosaki, Y., Xia, Y., and Noguchi, H., The preparation and electrochemical performance of solid solutions LiCoO2–Li2MnO3 as cathode materials for lithium ion batteries, J. Power Sources, 2006, vol. 159, no. 2, pp. 1353–1359. https://doi.org/10.1016/j.jpowsour.2005.12.037

    Article  CAS  Google Scholar 

  39. Song, L., Tang, Z., Chen, Y., Xiao, X., Li, L., Zheng, H., Li, B., and Liu, Z., Structural analysis of layered Li2MnO3–LiMO2 (M = Ni1/3Mn1/3Co1/3, Ni1/2Mn1/2) cathode materials by Rietveld refinement and first-principles calculations, Ceram. Int., 2016, vol. 42, pp. 8537–8544. https://doi.org/10.1016/j.ceramint.2016.02.080

    Article  CAS  Google Scholar 

  40. Yu, H., Kim, H., Wang, Y., He, P., Asakura, D., Nakamura, Y., and Zhou, H., High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries, Phys. Chem. Chem. Phys., 2012, vol. 14, no. 18, pp. 6584–6595 https://doi.org/10.1039/c2cp40745k

    Article  CAS  PubMed  Google Scholar 

  41. Paulsen, J.M. and Dahn, J.R., Phase diagram of Li–Mn–O spinel in air, Chem. Mater., 1999, vol. 11, pp. 3065–3079. https://doi.org/10.1021/cm9900960

    Article  CAS  Google Scholar 

  42. Brown, C.R., McCalla, E., and Dahn, J.R., Analysis of the cubic spinel region of the Li–Co–Mn oxide pseudo-ternary system, Solid State Ionics, 2013, vol. 253, pp. 234–238. https://doi.org/10.1016/j.ssi.2013.09.051

    Article  CAS  Google Scholar 

  43. Wang, L., Maxisch, T., and Ceder, G., First-principles approach to studying the thermal stability of oxide cathode materials, Chem. Mater., 2007, vol. 19, pp. 543–552. https://doi.org/10.1021/cm0620943

    Article  CAS  Google Scholar 

  44. Maiyalagan, T., Jarvis, K.A., Therese, S., Ferreira, P.J., and Manthiram, A., Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions, Nat. Commun., 2014, vol. 5, paper 3949. https://doi.org/10.1038/ncomms4949

  45. Choi, S. and Manthiram, A., Chemical synthesis and properties of spinel Li1–xCo2O4–δ, J. Solid State Chem., 2002, vol. 164, pp. 332–338. https://doi.org/10.1006/jssc.2001.9480

    Article  CAS  Google Scholar 

  46. Cho, Y., Lee, Y.-S., Park, S.-A., Lee, Y., and Cho, J., LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors, Electrochim. Acta, 2010, vol. 56, pp. 333–339. https://doi.org/10.1016/j.electacta.2010.08.074

    Article  CAS  Google Scholar 

  47. Bordeneuve, H., Guillemet-Fritsch, S., Rousset, A., Schuurman, S., and Pouain, V., Structure and electrical properties of single-phase cobalt manganese oxide spinels Mn3–xCoxO4 sintered classically and by spark plasma sintering (SPS), J. Solid State Chem., 2009, vol. 182, pp. 396–401. https://doi.org/10.1016/j.jssc.2008.11.004

    Article  CAS  Google Scholar 

  48. Reeves-McLaren, N., Sharp, J., Beltran-Mir, N., Rainforth, W.M., and West, A.R., Spinel–rock salt transformation in LiCoMnO4–δ, Proc. R. Soc. A, 2016, vol. 472, paper 20140991. https://doi.org/10.1098/rspa.2014.0991

  49. Amarilla, J.M., Rojzs, R.M., Pico, F., Pascual, L., Petrov, K., Kovacheva, D., Lazarraga, M.G., and Rojo, J.M., Nanosized LiMyMn2–y O4 (M = Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method. structural characterization and electrochemical properties, J. Power Sources, 2007, vol. 174, pp. 1212–1217. https://doi.org/10.1016/j.jpowsour.2007.06.056

    Article  CAS  Google Scholar 

  50. Robertson, A.D., Amstrong, A.R., and Bruce, R.G., Low temperature lithium manganese cobalt oxide spinels, Li4–xMn5–2xCo3xO12 (0 ≤ x ≤ 1), for use as cathode materials in rechargeable lithium batteries, J. Power Sources, 2001, vols. 97–98, pp. 332–335.

    Article  Google Scholar 

  51. Kjellqvist, L. and Selleby, M., Thermodynamic assessment of the Mn–Ni–O system, Int. J. Mater. Res., 2010, vol. 101, pp. 1222–1231. https://doi.org/10.3139/146.110412

    Article  CAS  Google Scholar 

  52. Kaboon, S. and Hu, Y.H., Study of NiO–CoO and Co3O4–Ni3O4 solid solutions in multiphase Ni–Co–O systems, Ind. Eng. Chem. Res., 2011, vol. 50, pp. 2015–2020. https://doi.org/10.1021/ie101249r

    Article  CAS  Google Scholar 

  53. Huang, T., Liu, B., Yang, P., Qiu, Z., and Hu, Z., Facilely synthesized NiCo2O4 nanoparticles as electrode material for supercapacitors, Int. J. Electrochem. Sci., 2018, vol. 13, pp. 6144–6154. https://doi.org/10.20964/2018.06.60

    Article  CAS  Google Scholar 

  54. Alca’ntara, R., Jaraba, M., Lavela, P., and Tirado, J.L., New LiNiyCo1–2yMn1+yO4 spinel oxide solid solutions as 5 V electrode material for Li-ion batteries, J. Electrochem. Soc., 2004, vol. 151, pp. A53–A58. https://doi.org/10.1149/1.1625945

    Article  CAS  Google Scholar 

  55. Li, D., Ito, A., Kobayakawa, K., Noguchi, H., and Sato, Y., Structural and electrochemical characteristics of LiNi0.5–xCo2xMn1.5–xO4 prepared by spray drying process and post-annealing in O2, J. Power Sources, 2006, vol. 161, pp. 1241–1246. https://doi.org/10.1016/j.jpowsour.2006.04.120

    Article  CAS  Google Scholar 

  56. Ito, A., Li, D., Lee, Y., Kobayakawa, K., and Sato, Y., Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4, J. Power Sources, 2008, vol. 185, pp. 1423–1433. https://doi.org/10.1016/j.jpowsour.2008.08.087

    Article  CAS  Google Scholar 

  57. Oh, S.W., Park, S.-H., Amine, K., and Sun, Y.-K., Synthesis and characterization of spherical morphology [Ni0.4Co0.2Mn0.4]3O4 materials for lithium secondary batteries, J. Power Sources, 2006, vol. 160, pp. 558–562. https://doi.org/10.1016/j.jpowsour.2006.01.023

  58. Yokoyama, T., Meguro, T., Shimada, Y., Tatami, J., Komeya, K., and Abe, Y., Preparation and electrical properties of sintered oxides composed of Mn1.5Co(0.25+x)Ni(1.25–x)O4 (0 ≤ x ≤ 0.75) with a cubic spinel structure, J. Mater. Sci., 2007, vol. 42, pp. 5860–5966. https://doi.org/10.1007/s10853-006-1141-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education: state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Nipan.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nipan, G.D. Isobaric–Isothermal Polyhedra of Solid Solutions in the Li–Ni–Mn–Co–O System. Inorg Mater 57, 518–523 (2021). https://doi.org/10.1134/S0020168521050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521050058

Keywords:

Navigation