Skip to main content
Log in

Recent Strategies in the Synthesis of Spiroindole and Spirooxindole Scaffolds

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Spiroindole and spirooxindole scaffolds are very important spiro-heterocyclic compounds in drug design processes. Significant attention has been directed at obtaining molecules based on spiroindole and spirooxindole derivatives that have bioactivity against cancer cells, microbes, and different types of disease affecting the human body. Due to their inherent three-dimensional nature and ability to project functionalities in all three dimensions, they have become biological targets. Considering reports on spiroindole and spirooxindole-containing scaffolds in the past decades, introducing novel synthetic procedures has been an active research field of organic chemistry for well over a century and will be useful in creating new therapeutic agents. This review summarizes the pharmacological significance of spiroindole and spirooxindole scaffolds and highlights the latest strategies for their synthesis, focusing particularly on the past 2 years with typical examples. The spiroindole and spirooxindoles in this review are divided by the type and ring size of the spirocycle that is fused to indole or oxindole. Summarizing these procedures will be very beneficial for discovering novel therapeutic candidate molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54

Similar content being viewed by others

References

  1. Mei GJ, Shi F (2018) Chem Commun 54:6607–6621

    Article  CAS  Google Scholar 

  2. Joshi R, Kumawat A, Singh S, Roy TK, Pardasani RT (2018) J Heterocycl Chem 55:1783–1790

    Article  CAS  Google Scholar 

  3. Zhang M, Yang W, Qian M, Zhao T, Yang L, Zhu C (2018) Tetrahedron 74:955–961

    Article  CAS  Google Scholar 

  4. Adeyemi A, Wetzel A, Bergman J, Brånalt J, Larhed M (2019) Synlett 30:82–88

    Article  CAS  Google Scholar 

  5. Sapnakumari M, Narayana B, Shashidhara KS, Sarojini BK (2017) J Taibah Univ Sci 11:1008–1018

    Article  Google Scholar 

  6. Yagnam S, Akondi AM, Trivedi R, Rathod B, Prakasham RS, Sridhar B (2018) Synth Commun 48:255–266

    Article  CAS  Google Scholar 

  7. Pavlovska TL, Redkin RG, Lipson VV, Atamanuk DV (2016) Mol Divers 20:299–344

    Article  CAS  PubMed  Google Scholar 

  8. Schreiber SL (2000) Science 287:1964–1969

    Article  CAS  PubMed  Google Scholar 

  9. Xia M, Ma RZ (2014) J Heterocycl Chem 51:539–554

    Article  CAS  Google Scholar 

  10. Ball-Jones NR, Badillo JJ, Franz AK (2012) Org Biomol Chem 10:5165–5181

    Article  CAS  PubMed  Google Scholar 

  11. Bariwal J, Voskressensky LG, Van der Eycken EV (2018) Chem Soc Rev 47:3831–3848

    Article  PubMed  Google Scholar 

  12. Youseftabar-Miri L, Hosseinjani-Pirdehi H, Akrami A, Hallajian S (2020) J Iran Chem Soc 17:2179–2231

    Article  CAS  Google Scholar 

  13. Wetzel A, Bergman J, Brandt P, Larhed M, Branalt J (2017) Org Lett 19:1602–1605

    Article  CAS  PubMed  Google Scholar 

  14. Mc Cartney D, Guiry PJ (2011) Chem Soc Rev 40:5122–5150

    Article  CAS  PubMed  Google Scholar 

  15. Qin L, Ren X, Lu Y, Li Y, Zhou J (2012) Angew Chem 124:6017–6021

    Article  Google Scholar 

  16. Machida M, Mori K (2018) Chem Lett 47:868–871

    Article  CAS  Google Scholar 

  17. Panda SS, Jones RA, Bachawala P, Mohapatra PP (2017) Mini-Rev Med Chem 17:1515–1536

    Article  CAS  PubMed  Google Scholar 

  18. Zhou LM, Qu RY, Yang GF (2020) Expert Opin Drug Discov 15:603–625

    Article  CAS  PubMed  Google Scholar 

  19. Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK (2016) Synth Commun 46:1643–1664

    Article  CAS  Google Scholar 

  20. Karthikeyan SV, Bala BD, Raja VPA, Perumal S, Yogeeswari P, Sriram D (2010) Bioorg Med Chem Lett 20:350–353

    Article  CAS  PubMed  Google Scholar 

  21. Gao YT, Jin XY, Liu Q, Liu AD, Cheng L, Wang D, Liu L (2018) Molecules 23:2265

    Article  PubMed Central  CAS  Google Scholar 

  22. Li G, Huang L, Xu J, Sun W, Xie J, Hong L, Wang R (2016) Adv Synth Catal 358:2873–2877

    Article  CAS  Google Scholar 

  23. Huang Y, Min W, Wu QW, Sun J, Shi DH, Yan CG (2018) New J Chem 42:16211–16216

    Article  CAS  Google Scholar 

  24. Vidya S, Priya K, Velayudhan Jayasree D, Deepthi A, Biju PG (2019) Synth Commun 49:1592–1602

    Article  CAS  Google Scholar 

  25. Ryan JH (2015) ARKIVOC 2015:160–183

    Article  Google Scholar 

  26. Arumugam N, Suresh Kumar R, AlmansourPerumal IAS (2013) Curr Org Chem 17:1929–1956

    Article  CAS  Google Scholar 

  27. Kumar SV, Rani GU, Divyalakshmi M, Bhuvanesh N, Muthusubramanian S, Perumal S (2019) Mol Divers 23:669–680

    Article  CAS  PubMed  Google Scholar 

  28. Barakat A, Islam MS, Ghawas HM, Al-Majid AM, El-Senduny FF, Badria FA, Ghabbour HA (2019) Bioorg Chem 86:598–608

    Article  CAS  PubMed  Google Scholar 

  29. Wang C, Wen D, Chen H, Deng Y, Liu X, Liu X, Wang K, Yan W (2019) Org Biomol Chem 17:5514–5519

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Fang HL, Huang YX, Sun J, Yan CG (2019) J Org Chem 84:12437–12451

    Article  CAS  PubMed  Google Scholar 

  31. Ma B, Wu P, Wang X, Wang Z, Lin HX, Dai HX (2019) Angew Chem Int Ed 58:13335–13339

    Article  CAS  Google Scholar 

  32. Tripathi VD, Shukla AK, Mohammed HS (2019) Asian J Chem 31:613–616

    Article  CAS  Google Scholar 

  33. Zha T, Tong X, Deng Y, Peng F, Shao Z (2019) Org Lett 21:6068–6073

    Article  CAS  PubMed  Google Scholar 

  34. Palisse A, Kirsch SF (2012) Org Biomol Chem 10:8041–8047

    Article  CAS  PubMed  Google Scholar 

  35. Wang BG, Gloer JB, Ji NY, Zhao JC (2013) Chem Rev 113:3632–3685

    Article  CAS  PubMed  Google Scholar 

  36. Xu J, Liang L, Zheng H, Chi YR, Tong R (2019) Nat Commun 10:1–11

    Article  CAS  Google Scholar 

  37. Stahl R, Borschberg HJ, Acklin P (1996) Helv Chim Acta 79:1361–1378

    Article  Google Scholar 

  38. Mishra R, Jana A, Panday AK, Choudhury LH (2019) New J Chem 43:2920–2932

    Article  CAS  Google Scholar 

  39. Wu C, Liu J, Kui D, Lemao Y, Yingjie X, Luo X, Shen R (2020) Polycyclic Aromat Compd 20:1–13

    CAS  Google Scholar 

  40. Khojasteh-Khosro S, Shahbazi-Alavi H (2019) J Chem Res 43:107–111

    Article  CAS  Google Scholar 

  41. Tripathi VD (2020) Asian J Chem 32:293–296

    Article  CAS  Google Scholar 

  42. Kirichok AA, Shton IO, Pishel IM, Zozulya SA, Borysko PO, Kubyshkin V, Mykhailiuk PK (2018) Chem Eur J 24:5444–5449

    Article  CAS  PubMed  Google Scholar 

  43. Krishnan J, Mayadevi TS, Varughese S, Nair V (2019) Eur J Org Chem 2019:1557–1561

    Article  CAS  Google Scholar 

  44. Palomba M, Scarcella E, Sancineto L, Bagnoli L, Santi C, Marini F (2019) Eur J Org Chem 2019:5396–5401

    Article  CAS  Google Scholar 

  45. Trubitson D, Žari S, Kaabel S, Kudrjashova M, Kriis K, Järving I, Kanger T (2018) Synthesis-Stuttgart 50:314–322

    Article  CAS  Google Scholar 

  46. Kang T, Zhao P, Yang J, Lin L, Feng X, Liu X (2018) Chem Eur J 24:3703–3706

    Article  CAS  PubMed  Google Scholar 

  47. Song ZY, Chen KQ, Chen XY, Ye S (2018) J Org Chem 83:2966–2970

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Y, Yu SW, Yang Y, Liu YL, Xu XY, Zhang XM, Yuan WC (2018) Org Biomol Chem 16:6647–6651

    Article  CAS  PubMed  Google Scholar 

  49. Taheri M, Mirza B, Zeeb M (2018) J Nanostruct Chem 8:421–429

    Article  CAS  Google Scholar 

  50. Ghadiri S, Bayat M, Hosseini FS (2019) Monatsh Chem 150:1079–1084

    Article  CAS  Google Scholar 

  51. Kutschy P, Salayová A, Čurillová Z, Kožár T, Mezencev R, Mojžiš J, Zburová M (2009) Bioorg Med Chem 17:3698–3712

    Article  CAS  PubMed  Google Scholar 

  52. Budovská M, Baláž M, Mezencev R, Tischlerová V, Zigová M, Mojžiš J (2018) J Fluorine Chem 216:24–32

    Article  CAS  Google Scholar 

  53. Aksenov AV, Aksenov NA, Aksenov DA, Khamraev VF, Rubin M (2018) Chem Commun 54:13260–13263

    Article  CAS  Google Scholar 

  54. Aksenov AV, Aksenov DA, Arutiunov NA, Aksenov NA, Aleksandrova EV, Zhao Z, Rubin M (2019) J Org Chem 84:7123–7137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Iran National Science Foundation (Grant no. 98004758) for financial support. We acknowledge the support of this research from Imam Khomeini International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bayat.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, S., Bayat, M. & Mirzaei, F. Recent Strategies in the Synthesis of Spiroindole and Spirooxindole Scaffolds. Top Curr Chem (Z) 379, 25 (2021). https://doi.org/10.1007/s41061-021-00337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00337-7

Keywords

Navigation