Skip to main content
Log in

Generation of orthogonal rational functions by procedures for structured matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The problem of computing recurrence coefficients of sequences of rational functions orthogonal with respect to a discrete inner product is formulated as an inverse eigenvalue problem for a pencil of Hessenberg matrices. Two procedures are proposed to solve this inverse eigenvalue problem, via the rational Arnoldi iteration and via an updating procedure using unitary similarity transformations. The latter is shown to be numerically stable. This problem and both procedures are generalized by considering biorthogonal rational functions with respect to a bilinear form. This leads to an inverse eigenvalue problem for a pencil of tridiagonal matrices. A tridiagonal pencil implies short recurrence relations for the biorthogonal rational functions, which is more efficient than the orthogonal case. However, the procedures solving this problem must rely on nonunitary operations and might not be numerically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beckermann, B., Derevyagin, M., Zhedanov, A.: The linear pencil approach to rational interpolation. J. Approx. Theory 162(6), 1322–1346 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bennett, J.M.: Triangular factors of modified matrices. Numer. Math. 7(3), 217–221 (1965)

    Article  MathSciNet  Google Scholar 

  3. Boley, D., Golub, G.H.: A survey of matrix inverse eigenvalue problems. Inverse Probl. 3(4), 595–622 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bultheel, A., Van Barel, M.: Vector orthogonal polynomials and least squares approximation. SIAM J. Matrix Anal.Appl. 16(3), 863–885 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bultheel, A., Van Barel, M., Van gucht, P.: Orthogonal basis functions in discrete least-squares rational approximation. J. Comput. Appl. Math. 164-165, 175–194 (2004). Proceedings of the 10th International Congress on Computational and Applied Mathematics

    Article  MathSciNet  Google Scholar 

  6. Camps, D., Mach, T., Vandebril, R., Watkins, D.S.: On pole-swapping algorithms for the eigenvalue problem (2020)

  7. Camps, D., Meerbergen, K., Vandebril, R.: A Rational QZ method. SIAM J. Matrix Anal.Appl. 40(3), 943–972 (2019)

    Article  MathSciNet  Google Scholar 

  8. Chu, M.T.: Inverse eigenvalue problems. SIAM Rev. 40(1), 1–39 (1998)

    Article  MathSciNet  Google Scholar 

  9. Davis, P.J.: Interpolation and Approximation. Dover Books on Advanced Mathematics. Dover, New York (1975)

    Google Scholar 

  10. Elhay, S., Golub, G.H., Kautsky, J.: Updating and downdating of orthogonal polynomials with data fitting applications. SIAM J. Matrix Anal.Appl. 12(2), 327–353 (1991)

    Article  MathSciNet  Google Scholar 

  11. Fasino, D.: Rational Krylov matrices and QR steps on hermitian diagonal-plus-semiseparable matrices. Numer. Linear Algebra Appl. 12 (8), 743–754 (2005)

    Article  MathSciNet  Google Scholar 

  12. Gallivan, K., Grimme, E., Van Dooren, P.: Padé approximation of large-scale dynamic systems with Lanczos methods. In: Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 1, pp. 443–448. IEEE (1994)

  13. Gallivan, K., Grimme, E., Van Dooren, P.: A rational Lanczos algorithm for model reduction. Numer. Algoritm. 12(1), 33–63 (1996)

    Article  MathSciNet  Google Scholar 

  14. Gill, P.E., Golub, G.H., Murray, W., Saunders, M.A.: Methods for modifying matrix factorizations. Math. Comput. 28(126), 505–535 (1974)

    Article  MathSciNet  Google Scholar 

  15. Gragg, W.B., Harrod, W.J.: The numerically stable reconstruction of Jacobi matrices from spectral data. Numer. Math. 44, 317–335 (1984)

    Article  MathSciNet  Google Scholar 

  16. Gragg, W.B., Lindquist, A.: On the partial realization problem. Linear Algebra Appl. 50, 277–319 (1983)

    Article  MathSciNet  Google Scholar 

  17. Gutknecht, M.H.: Lanczos-type solvers for nonsymmetric linear systems of equations. Acta Numer. 6, 271–397 (1997)

    Article  MathSciNet  Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University press, Cambridge (1985)

    Book  Google Scholar 

  19. Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Oxford University Press, New York (2013)

    MATH  Google Scholar 

  20. Mach, T., Van Barel, M., Vandebril, R.: Inverse eigenvalue problems for extended Hessenberg and extended tridiagonal matrices. J. Comput. Appl. Math. 272, 377–398 (2014)

    Article  MathSciNet  Google Scholar 

  21. Olsson, K.H.A., Ruhe, A.: Rational Krylov for eigenvalue computation and model order reduction. BIT Numer. Math. 46, S99–S111 (2006)

    Article  MathSciNet  Google Scholar 

  22. Reichel, L.: Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation. SIAM J. Matrix Anal.Appl. 12(3), 552–564 (1991)

    Article  MathSciNet  Google Scholar 

  23. Reichel, L.: Construction of polynomials that are orthogonal with respect to a discrete bilinear form. Adv. Comput. Math. 1(2), 241–258 (1993)

    Article  MathSciNet  Google Scholar 

  24. Reichel, L., Ammar, G., Gragg, W.: Discrete least squares approximation by trigonometric polynomials. Math. Comput. 57, 273–289 (1991)

    Article  MathSciNet  Google Scholar 

  25. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  Google Scholar 

  26. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. Matrix pairs. Linear Algebra Appl. 197, 283–295 (1994)

    Article  MathSciNet  Google Scholar 

  27. Rutishauser, H.: On Jacobi rotation patterns. In: Experimental Arithmetic, High Speed Computing and Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 15, pp. 241–258. American Mathematical Society, Providence (1963)

  28. Szegő, G: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

  29. Van Barel, M., Fasino, D., Gemignani, L., Mastronardi, N.: Orthogonal rational functions and structured matrices. SIAM J. Matrix Anal.Appl. 26(3), 810–829 (2005)

    Article  MathSciNet  Google Scholar 

  30. Van Buggenhout, N., Van Barel, M., Vandebril, R.: Biorthogonal rational Krylov subspace methods. Electron. Trans. Numer. Anal. 51, 451–468 (2019)

    Article  MathSciNet  Google Scholar 

  31. Van Dooren, P.: A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput. 2(2), 121–135 (1981)

    Article  MathSciNet  Google Scholar 

  32. Wilkinson, J.H.: Plane rotations in floating-point arithmetic. In: Experimental Arithmetic, High Speed Computing and Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 15, pp. 185–198. American Mathematical Society, Providence (1963)

  33. Wilkinson, J.H.: Convergence of the LR, QR, and related algorithms. Comput. J. 8(1), 77–84 (1965)

    Article  MathSciNet  Google Scholar 

  34. Xu, W.R., Bebiano, N., Chen, G.L.: An inverse eigenvalue problem for pseudo-Jacobi matrices. Appl. Math. Comput. 346, 423–435 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of the first author was funded by the Research Council KU Leuven, C1-project C14/17/073 (Numerical Linear Algebra and Polynomial Computations), project C14/16/056 (Inverse-free Rational Krylov Methods: Theory and Applications); the research of the second author by the Research Council KU Leuven, C1-project C14/17/073 (Numerical Linear Algebra and Polynomial Computations), by the Fund for Scientific Research–Flanders (Belgium), EOS Project no 30468160; and the research of the third author by the Research Council KU Leuven, project C14/16/056 (Inverse-free Rational Krylov Methods: Theory and Applications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niel Van Buggenhout.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Buggenhout, N., Van Barel, M. & Vandebril, R. Generation of orthogonal rational functions by procedures for structured matrices. Numer Algor 89, 551–582 (2022). https://doi.org/10.1007/s11075-021-01125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01125-6

Keywords

Navigation