Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Development of semiconducting polymers based on a novel heteropolycyclic aromatic framework

Abstract

The choice of appropriate building blocks and the development of new donor and acceptor units are essential for the creation of high-performance donor-acceptor (D-A)-type semiconducting polymers. In addition, the introduction of π-extended aromatic frameworks into polymer main chains is a useful strategy to facilitate dense π-π stacking structures with long-range order in the solid-state, thereby enabling efficient carrier transport in organic electronics. However, such highly π-extended aromatic frameworks have rarely been reported due to the need for multiple steps. This focus review describes the synthesis and characterization of D-A polymers based on three π-extended heteropolycyclic aromatic frameworks, using phenanthro[1,2-b:8,7-b’]dithiophene (PDT) as a weak donor and alkoxy-substituted anthra[1,2‑c:5,6‑c’]bis([1,2,5]thiadiazole) (ATz) and vinylene-bridged 5,6-difluorobenzo[c][1,2,5]thiadiazole (FBTzE) as new thiadiazole-based acceptor units. In addition, their applications to organic electronic devices, such as organic field-effect transistors (OFETs) and organic photovoltaic cells (OPVs), and the detailed relationship between the thin-film structure and device performance in OFETs and OPVs were investigated. These results indicate that these novel π-extended heteropolycyclic aromatic frameworks may serve as building units for the development of wide-bandgap p-type semiconducting polymers for nonfullerene solar cells and low-bandgap n-type semiconducting polymers for OFETs and OPVs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi W, Guo Y, Liu Y. When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things. Adv Mater. 2019;31:1901493.

    Google Scholar 

  2. Hashemi SA, Ramakrishna S, Aberle AG. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ Sci. 2020;13:685–743.

    Article  CAS  Google Scholar 

  3. Qin J, Lan L, Chen S, Huang F, Shi H, Chen W, et al. Recent progress in flexible and stretchable organic solar cells. Adv Funct Mater. 2020;30:2002529.

    Article  CAS  Google Scholar 

  4. Benten H, Mori D, Ohkita H, Ito S. Recent research progress of polymer donor/polymer acceptor blend solar cells. J Mater Chem A. 2016;4:5340–65.

    Article  CAS  Google Scholar 

  5. Sirringhaus H. 25th Anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv Mater. 2014;26:1319–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee C, Lee S, Kim G-U, Lee W, Kim BJ. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem Rev. 2019;119:8028–86.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules. 2012;45:607–32.

    Article  CAS  Google Scholar 

  8. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Recent advances in bulk heterojunction polymer solar cells. Chem Rev. 2015;115:12666–731.

    Article  CAS  PubMed  Google Scholar 

  9. Kim M, Ryu SU, Park SA, Choi K, Kim T, Chung D, Park T. Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv Funct Mater. 2020;30:1904545.

    Article  CAS  Google Scholar 

  10. Osaka I. Semiconducting Polymers based on electron-deficient π-building units. Polymer J. 2015;47:18–25.

    Article  CAS  Google Scholar 

  11. Kobayashi N, Sasaki M, Nomoto K. Stable peri-xanthenoxanthene thin-film transistors with efficient carrier injection. Chem Mater. 2009;21:552–6.

    Article  CAS  Google Scholar 

  12. Klauk H, Zschieschang U, Weitz RT, Meng H, Sun F, Nunes G, et al. Organic transistors based on di(phenylvinyl)anthracene: performance and stability. Adv Mater. 2007;19:3882–7.

    Article  CAS  Google Scholar 

  13. Pan H, Li Y, Wu Y, Liu P, Ong BS, Zhu S, et al. Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J Am Chem Soc. 2007;129:4112–3.

    Article  CAS  PubMed  Google Scholar 

  14. de Leeuw DM, Simenon MMJ, Brown REF, Einerhand REF. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Metals. 1997;87:53–9.

    Article  Google Scholar 

  15. Jones BA, Facchetti A, Wasielewski MR, Marks TJ.Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-typecharge transport. J Am Chem Soc. 2007;129:15259–78.

    Article  CAS  PubMed  Google Scholar 

  16. Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater. 2009;21:1323–38.

    Article  CAS  Google Scholar 

  17. Osaka I, Takimiya K. Backbone orientation in semiconducting polymers. Polymer. 2015;59:A1–A15.

    Article  CAS  Google Scholar 

  18. Holliday S, Donaghey JE, McCulloch I. Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem Mater. 2014;26:647–63.

    Article  CAS  Google Scholar 

  19. Nguyen TL, Choi H, Ko S-J, Uddin MA, Walker B, Yum S, et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ~300 nm thick conventional single-cell device. Energy Environ Sci. 2014;7:3040–51.

    Article  CAS  Google Scholar 

  20. Osaka I, Saito M, Koganezawa T, Takimiya K. Thiophene–thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances. Adv Mater. 2014;26:331–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou N, Guo X, Ortiz RP, Harschneck T, Manley EF, Lou SJ, et al. Marked consequences of systematic oligothiophene catenation in thieno[3,4‑c]pyrrole-4,6-dione and bithiopheneimide photovoltaic copolymers. J Am Chem Soc. 2015;137:12565–79.

    Article  CAS  PubMed  Google Scholar 

  22. Osaka I, Kakara T, Takemura N, Koganezawa T, Takimiya K. Naphthodithiophene−naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. J Am Chem Soc. 2013;135:8834–7.

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Puniredd SR, Baumgarten M, Pisula W, Müllen K. Rational design of benzotrithiophene-diketopyrrolopyrrole-containing donor-acceptor polymers for improved charge carrier transport. Adv Mater. 2013;25:5467–72.

    Article  CAS  PubMed  Google Scholar 

  24. Piliego C, Holcombe TW, Douglas JD, Woo CH, Beaujuge PM, Fréchet JMJ. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc. 2010;132:7595–7.

    Article  CAS  PubMed  Google Scholar 

  25. Meager I, Ashraf RS, Mollinger S, Schroeder BC, Bronstein H, Beatrup D, et al. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J Am Chem Soc. 2013;135:11537–40.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Richter LJ, DeLongchamp DM, Kline RJ, Hammond MR, McCulloch I, et al. Molecular packing of high-mobility diketopyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. J Am Chem Soc. 2011;133:15073–84.

    Article  CAS  PubMed  Google Scholar 

  27. Kim J-H, Park JB, Jung IH, Grimsdale AC, Yoon SC, Yang H, et al. Well-controlled thieno[3,4-c]pyrrole-4,6-(5H)-dione based conjugated polymers for high performance organic photovoltaic cells with the power conversion efficiency exceeding 9%. Energy Environ Sci. 2015;8:2352–6.

    Article  CAS  Google Scholar 

  28. Osaka I, Takimiya K. Naphthobischalcogenadiazole conjugated polymers: emerging materials for organic electronics. Adv Mater. 2017;29:1605218.

    Article  CAS  Google Scholar 

  29. He M, Li W, Gao Y, Tian H, Zhang J, Tong H, et al. Donor−acceptor conjugated polymers based on dithieno[3,2‑b:3’,2‑b’]naphtho[1,2‑b:5,6‑b’]dithiophene: synthesis and semiconducting properties. Macromolecules. 2016;49:825–32.

    Article  CAS  Google Scholar 

  30. Fei Z, Han Y, Gann E, Hodsden T, Chesman ASR, McNeill CR, et al.  Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications. J Am Chem Soc. 2017;139:8552–61.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Han Y, Zhu X, Fei Z, Feng Y, Treat ND, et al. Novel alkylated indacenodithieno[3,2-b]thiophene-based polymer for high-performance field-effect transistors. Adv Mater. 2016;28:3922–7.

    Article  CAS  PubMed  Google Scholar 

  32. Nishihara Y, Kinoshita M, Hyodo K, Okuda Y, Eguchi R, Goto H, et al. Phenanthro[1,2-b:8,7-b’]dithiophene: a new picene-type molecule for transistor applications. RSC Adv. 2013;3:19341–7.

    Article  CAS  Google Scholar 

  33. Hyodo K, Nonobe H, Nishinaga S, Nishihara Y. Synthesis of 2,9-dialkylated phenanthro[1,2-b:8,7-b’]dithiophenes via cross-coupling reactions and sequential Lewis acid-catalyzed regioselective cycloaromatization of epoxide. Tetrahedron Lett. 2014;55:4002–5.

    Article  CAS  Google Scholar 

  34. Mori H, Nishihara Y. Low-bandgap semiconducting polymers based on sulfur-containing phenacene-type molecules for transistor and solar cell applications. Polymer J. 2018;50:615–25.

    Article  CAS  Google Scholar 

  35. Mori H, Nonobe H, Nishihara Y. Highly crystalline, low band-gap semiconducting polymers based on phenanthrodithiophene-benzothiadiazole for solar cells and transistors. Polym Chem. 2016;7:1549–58.

    Article  CAS  Google Scholar 

  36. Saito M, Osaka I, Suda Y, Yoshida H, Takimiya K. Dithienylthienothiophenebisimide, a versatile electron-deficient unit for semiconducting polymers. Adv Mater. 2016;28:6921–5.

    Article  CAS  PubMed  Google Scholar 

  37. Mori H, Takahashi R, Hyodo K, Nishinaga S, Sawanaka Y, Nishihara Y. Phenanthrodithiophene (PDT)−difluorobenzothiadiazole (DFBT) copolymers: Effect on molecular orientation and solar cell performance of alkyl substitution onto a PDT core. Macromolecules. 2018;51:1357–69.

    Article  CAS  Google Scholar 

  38. Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. C-H Activation for the Construction of C-B Bonds. Chem Rev. 2010;110:890–931.

    Article  CAS  PubMed  Google Scholar 

  39. Miyaura N, Ishiyama T, Sasaki H, Ishikawa M, Satoh M, Suzuki A. Palladium-catalyzed inter- and intramolecular cross-coupling reactions of B-alkyl-9-borabicyclo[3.3.1]nonane derivatives with 1-Halo-1-alkenes or haloarenes. Syntheses of functionalized alkenes, arenes, and cycloalkenes via a hydroboration-coupling sequence. J Am Chem Soc. 1989;111:314–21.

    Article  CAS  Google Scholar 

  40. Carsten B, He F, Son HJ, Xu T, Yu L. Stille polycondensation for synthesis of functional materials. Chem Rev. 2011;111:1493–528.

    Article  CAS  PubMed  Google Scholar 

  41. Lee H, Park C, Sin DH, Park JH, Cho K. Recent advances in morphology optimization for organic photovoltaics. Adv Mater. 2018;30:1800453.

    Article  CAS  Google Scholar 

  42. Jeffries-EL M, Kobilka BM, Hale BJ. Optimizing the performance of conjugated polymers in organic photovoltaic cells by traversing group 16. Macromolecules. 2014;47:7253–71.

    Article  CAS  Google Scholar 

  43. Zhao J, Li Y, Hunt A, Zhang J, Yao H, Li Z, et al. A difluorobenzoxadiazole building block for efficient polymer solar cells. Adv Mater. 2016;28:1868–73.

    Article  CAS  PubMed  Google Scholar 

  44. Mori H, Takahashi R, Nishihara Y. Development of a phenanthrodithiophene-difluorobenzoxadiazole copolymer exhibiting high open-circuit voltage in organic solar cells. J Polym Chem Part A: Polym Chem. 2018;56:2646–55.

    Article  CAS  Google Scholar 

  45. Kawashima K, Fukuhara T, Suda Y, Suzuki Y, Koganezawa T, Yoshida H, et al. Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers. J Am Chem Soc. 2016;138:10265–75.

    Article  CAS  PubMed  Google Scholar 

  46. Rogers JT, Schmidt K, Toney MF, Kramer EJ, Bazan GC. Structural order in bulk heterojunction films prepared with solvent additives. Adv Mater. 2011;23:2284–8.

    Article  CAS  PubMed  Google Scholar 

  47. Takimiya K, Osaka I, Nakano M. π-Building blocks for organic electronics: revaluation of “inductive” and “resonance” effects of π-electron deficient units. Chem Mater. 2014;26:587–93.

    Article  CAS  Google Scholar 

  48. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy. 2016;1:15027.

    Article  CAS  Google Scholar 

  49. Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, Peng J, Ma Y, Cao Y. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv Mater. 2014;26:2586–91.

    Article  CAS  PubMed  Google Scholar 

  50. Kini GP, Oh S, Abbas Z, Rasool S, Jahandar M, Song CE, et al. Effects on photovoltaic performance of dialkyloxy-benzothiadiazole copolymers by varying the thienoacene donor. ACS Appl Mater Interfaces. 2017;9:12617–28.

    Article  CAS  PubMed  Google Scholar 

  51. Ko S-J, Hoang QV, Song CE, Uddin MA, Lim E, Park SY, et al. High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy Environ Sci. 2017;10:1443–55.

    Article  CAS  Google Scholar 

  52. Casey A, Han Y, Fei Z, White AJP, Anthopoulos TD, Heeney M. Cyano substituted benzothiadiazole: a novel acceptor inducing n-type behaviour in conjugated polymers. J Mater Chem C. 2015;3:265–75.

    Article  CAS  Google Scholar 

  53. Kini GP, Choi JY, Jeon SJ, Suh IS, Moon DK. Effect of mono alkoxy-carboxylate-functionalized benzothiadiazole-based donor polymers for non-fullerene solar cells. Dyes Pigments. 2019;164:62–71.

    Article  CAS  Google Scholar 

  54. Mori H, Nishinaga S, Takahashi R, Nishihara Y. Alkoxy-substituted anthra[1,2‑c:5,6‑c’]bis([1,2,5]thiadiazole) (ATz): A new electron-acceptor unit in the semiconducting polymers for organic electronics. Macromolecules. 2018;51:5473–84.

    Article  CAS  Google Scholar 

  55. Asanuma Y, Mori H, Takahashi R, Nishihara Y. Vinylene-bridged difluorobenzo[c][1,2,5]thiadiazole (FBTzE): a new electron-deficient building block for high-performance semiconducting polymers in organic electronics. J Mater Chem C. 2019;7:905–916.

    Article  CAS  Google Scholar 

  56. Bracke W, Marvel CS. Polymers containing anthraquinone units: polymers from 1,2,5,6-tetraaminoanthraqinone. J Polym Chem Part A: Polym Chem. 1970;8:3177–87.

    Article  CAS  Google Scholar 

  57. Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa T, et al. Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J Am Chem Soc. 2012;134:3498–507.

    Article  CAS  PubMed  Google Scholar 

  58. Yi H, Al-Faifi S, Iraqi A, Watters DC, Kingsley J, Lidzey DG. Carbazole and thienyl benzo[1,2,5]thiadiazole based polymers with improved open circuit voltages and processability for application in solar cells. J Mater Chem. 2011;21:13649–56.

    Article  CAS  Google Scholar 

  59. Huang H, Yang L, Facchetti A, Marks TJ. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem Rev. 2017;117:10291–318.

    Article  CAS  PubMed  Google Scholar 

  60. He C-Y, Wu C-Z, Zhu Y-L, Zhang X. Selective thienylation of fluorinated benzothiadiazoles and benzotriazoles for organic photovoltaics. Chem Sci. 2014;5:1317–21.

    Article  CAS  Google Scholar 

  61. Cai P, Chen Z, Zhang L, Chen J, Cao Y. An extended π-conjugated area of electron-donating units in D–A structured polymers towards high-mobility field-effect transistors and highly efficient polymer solar cells. J Mater Chem C. 2017;5:2786–93.

    Article  CAS  Google Scholar 

  62. Ho C-C, Chen C-A, Chang C-Y, Darling SB, Su W-F. Isoindigo-based copolymers for polymer solar cells with efficiency over 7%. J Mater Chem A. 2014;2:8026–32.

    Article  CAS  Google Scholar 

  63. Asanuma Y, Mori H, Nishihara Y. Transistor properties of semiconducting polymers based on vinylene-bridged difluorobenzo[c][1,2,5]thiadiazole (FBTzE). Chem Lett. 2019;48:1029–31.

    Article  CAS  Google Scholar 

  64. Yu SH, Song HG, Cho J, Kwon S-K, Kim Y-H, Chung DS. Synthetic approach for enhancing semiconductor properties of water-borne DPP-copolymer. Chem Mater. 2018;30:4808–15.

    Article  CAS  Google Scholar 

  65. Cheon HJ, Li X, Jeong YJ, Sung MJ, Li Z, Jeon I, et al. A novel design of donor–acceptor polymer semiconductors for printed electronics: application to transistors and gas sensors. J Mater Chem C. 2020;8:8410–9.

    Article  CAS  Google Scholar 

  66. Ding Y, Zhao F, Kim S, Wang X, Lu H, Zhang G, et al. Azaisoindigo-based polymers with alinear hybrid siloxane-based side chain for high-performance semiconductors processable with nonchlorinated solvents. ACS Appl Mater Interfaces. 2020;12:41832–41.

    Article  CAS  PubMed  Google Scholar 

  67. Dang D, Yu D, Wang E. Conjugated donor–acceptor terpolymers toward high-efficiency polymer solar cells. Adv Mater. 2019;31:1807019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Professor Yasushi Nishihara at Okayama University is gratefully acknowledged for providing valuable suggestions for these studies. This work was partly supported by ACT-C, JST Grant Number JPMJCR12YW, Japan, JSPS Grant-in-Aid for Young Scientists B (No. 26810129), Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Grant Number 15H00751, Japan, Okayama Foundation for Science and Technology, the Yakumo Foundation for Environmental Science, and Tonen General Research/Development Encouragement & Scholarship Foundation. GIWAXS experiments were performed at the BL46XU beamline of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposals 2015B1904, 2016A1542, 2016A1768, 2016B1875, 2017A1771, 2017B1831, and 2018B1595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Mori.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, H. Development of semiconducting polymers based on a novel heteropolycyclic aromatic framework. Polym J 53, 975–987 (2021). https://doi.org/10.1038/s41428-021-00497-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00497-9

This article is cited by

Search

Quick links