Skip to main content
Log in

Numerical Procedure for the Three-Dimensional Nonlinear Modelling of Composite Steel–Concrete Beams

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

Composite steel–concrete structures are commonly used in the field of bridges, where the steel frame provides great ease of installation, and concrete provides useful strength at low cost. This construction system makes it possible to seek to use each material to the best of its ability, so as to provide the entire construction system with greater savings. The purpose of this article is to be able to perform the simulation and the non-linear elastic calculation of composite steel–concrete beams through a calculation approach based on a matrix method of displacements. The numerical calculation model developed is based on taking into account the non-linearity of materials, or a set of laws allowing the modeling of the nonlinear behaviors of materials under an instantaneous and monotonous loading increasing until the ruin; the concrete is represented in its post-elastic part by a softening branch in compression and the contribution of the concrete stretched between two successive cracks is taken into account. Steel is represented by a perfect elastoplastic law or an elastoplastic law with firming. The proposed approach has been implemented on the Fortran programming language, where our procedure of numerical modeling of the mechanical behavior seems capable of correctly simulating the three-dimensional nonlinear behavior of isostatic and hyperstatic composite steel–concrete beams, under monotonous (increasing) static loading until ruin. It was validated by comparing the results of our calculations to experimental results or to analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(\varphi \left( \varepsilon \right)\) :

The actual behavior of the materials,

\({\text{E}}_{{{\text{b}}0}}\) :

Concrete modulus at the origin,

\({\upvarepsilon }_{{{\text{b}}0}}\) :

Peak strain corresponding to \({\text{f}}_{{{\text{cj}}}}\),

\({\text{f}}_{{{\text{cj}}}}\) :

Concrete compressive strength at the age j,

\({\text{f}}_{{{\text{cc}}}}\) :

Minimum characteristic resistance of concrete on cube,

\({\text{k}}_{{\text{b}}}\) :

Dimensionless parameters, sargin law,

\(\grave{\hbox{k}}_{{\text{b}}}\) :

Dimensionless parameters, sargin law,

\({\text{f}}_{{{\text{tj}}}}\) :

Concrete tensile strength,

\({\upvarepsilon }_{{{\text{rt}}}}\) :

Steel ultimate strain,

\({\upvarepsilon }_{{{\text{bt}}}}\) :

Concrete fiber tensile strain,

\({\upvarepsilon }_{{{\text{ft}}}}\) :

Tensile strain corresponding to \({\text{ f}}_{{\text{tj }}}\),

\({\upvarepsilon }_{{{\text{s}}1}}\) :

Strain corresponding to the end of the plastic bearing,

\({\upvarepsilon }_{{{\text{s}}2}}\) :

Strain corresponding to the end of the firming,

\({\upvarepsilon }_{{{\text{su}}}}\) :

Breaking strain,

\({\text{E}}_{{\text{a}}}\) :

Steel longitudinal modulus,

\({\upvarepsilon }_{{\text{e}}}\) :

Limit elastic strain of the steel,

\({\upsigma }_{{\text{e}}}\) :

Elastic yield stress of steel,

\({\upvarepsilon }_{{\text{u}}}\) :

Ultimate strain of steel,

\({\text{E}}_{{\text{a}}}\) :

Young's modulus of steel at the origin,

\({\upsigma }_{{\text{e}}} { }\) :

Conventional elastic limit at 2‰,

\({\upsigma }_{{\text{p}}} { }\) :

Stress in the prestressing steel,

\({\upvarepsilon }_{{\text{p}}} { }\) :

Strain in the prestressing steel,

\({\text{E}}_{{\text{p}}} { }\) :

Young's modulus at the origin in the prestressing steel,

fpeg :

The conventional elastic limit at 0.1%

\({\upvarepsilon }_{{{\text{su}}}}\) :

Failure strain

\({\upvarepsilon }_{{\text{e}}}\) :

Steel yield strain

\({\upsigma }_{{\text{e}}}\) :

Steel yield stress,

\({\upvarepsilon }_{{\text{u}}}\) :

Steel ultimate strain,

\({\text{E}}_{{\text{a}}}\) :

Steel modulus at the origin,

\({\upvarepsilon }_{{\text{x}}}\) :

Gravity center strain,

\({\text{N}}_{{{\text{btr}}}}\) :

Number of concrete trapezoid,

\({\text{N}}_{{{\text{am}}}}\) :

Number of steel profile trapezoid,

\({\text{N}}_{{\text{s}}}\) :

Number of passive reinforcing beds,

\({\text{A}}_{{{\text{ai}}}}\) :

Passive steel bed area,

\({\text{y}}_{{{\text{ai}}}}\) :

Passive steel bed ordinate,

\({\text{y}}_{{\text{i}}}\) :

Lower trapezoid ordinate,

\({\text{y}}_{{{\text{i}} + 1}}\) :

Upper trapezoid ordinate,

\({\text{b}}_{{\text{i}}}\) :

The lower abscissa of trapezoid along the x axis,

\({\text{b}}_{{{\text{i}} + 1}}\) :

The upper abscissa of trapezoid along the x axis,

\(\left\{ {{\text{ F}}_{{{\text{mn}}}} } \right\}\) :

Internal loads vector,

\({\text{E}}_{{\text{m}}} \left( {{\text{y}},{\text{z}}} \right)\) :

The longitudinal elastic modulus at a current point of the section,

\({\text{S}}_{{\text{b}}}\) :

The concrete cross-section,

\({\text{S}}_{{\text{p}}}\) :

The metal profile’s cross-section,

\(\Delta {\upsigma }_{{\text{m}}} \left( {{\text{y}},{\text{z}}} \right)\) :

Normal stress increase in a current point,

\({\text{E}}_{{{\text{ai}}}}\) :

The passive reinforcement elastic modulus,

\(\left[ {{\text{k}}_{{{\text{mn}}}} } \right]{ }\) :

Section stiffness matrix,

\(\left\{ {{\text{ F}}_{{{\text{sn}}}} } \right\}\) :

Section load vector,

\({\text{e}}\) :

Element length increase,

\({\text{L}}_{0}\) :

Element initially length,

L:

Element length after deformation,

\(\left[ {\text{B}} \right]{ }\) :

Geometric transformation matrix,

\(\left[ {{\text{K}}_{{\text{S}}} } \right]{ }\) :

Global stiffness matrix of the composite cross section,

\(\left[ {{\text{K}}_{{\text{L}}} } \right]\) :

Element stiffness matrix in the local coordinate,

\(\left[ {{\text{K}}_{{\text{X}}} } \right]{ }\) :

Element stiffness matrix in the absolute coordinates,

\(\left[ {{\text{K}}_{{\text{N}}} } \right]{ }\) :

Element stiffness matrix in the intrinsic system coordinates,

\(\left[ {{\text{K}}_{{\text{U}}} } \right]{ }\) :

Element Stiffness matrix in the intermediate local system coordinate,

\(\left\{ {{\text{F}}_{{\text{X}}} } \right\}{ }\) :

The nodes load vector in the absolute system coordinate,

\(\left\{ {{\text{S}}_{{\text{X}}} } \right\}{ }\) :

The nodes displacement vector in the absolute coordinate system,

\(\left\{ {{\text{F}}_{{\text{L}}} } \right\}\) :

The nodes load in the local coordinate system,

\(\left\{ {{\text{S}}_{{\text{L}}} } \right\}\) :

The nodes displacement vector in the local system coordinate,

\(\left\{ {{\text{F}}_{{\text{U}}} } \right\}\) :

The nodes load vector in the intermediate system coordinate,

\(\left\{ {{\text{S}}_{{\text{U}}} } \right\}\) :

The nodes displacement vector in the intermediate system coordinate,

\({\text{u}}_{{\text{i}}}\), \({\text{v}}_{{\text{i}}}\), \({\text{w}}_{{\text{i}}}\) :

Components of the displacement vector in the local coordinate system,

\(\left[ {{\text{S}}_{{\text{S}}} } \right]_{{{\text{i}} - 1}} { }\) :

Sections flexibility matrix of the iteration (i-1),

\(\varepsilon_{{\text{s}}} { }\) :

Strains balanced in the previous step,

\(\left\{ {\Delta {\text{F}}_{{\text{s}}} } \right\}{ }^{{\text{r}}}\) :

Loads increase in the step r,

\(\left\{ {\Delta {\upvarepsilon }} \right\}{ }_{0} { }\) :

Initial strains increase,

\(\left[ {\text{K}} \right]_{{\text{i}}} { }\) :

Structure stiffness matrix at the iteration (i),

\(\left\{ {{\text{ U}}_{{\text{s}}} } \right\}{ }\) :

Node displacement vector at the latest stable step,

\(\left\{ {{\Delta P}} \right\}{ }^{{\text{r}}}\) :

Applied load increase in the r step,

\(\left\{ {\text{P}} \right\}{ }\) :

External structures applied loads,

\(\left\{ {{\text{P}}^{{{\text{int}}}} } \right\}{ }\) :

Internal structures applied loads,

\({\text{G}}.{\text{A}}_{{\text{y}}}\) :

The rigidity of the section with the shear force in the xy plane,

\({\text{G}}.{\text{A}}_{{\text{z}}}\) :

The rigidity of the section with the shear force in the xz plane,

\({\text{G}}.{\text{J}}\) :

The torsional stiffness of the section,

\(\rho\) :

Density of the concrete

References

  • Aribert, J. M., & Labib, A. G. (1982). Model elasto-plastic calculation of composite beams with partial connection. Metallic Construction, 19(4), 3–51.

    Google Scholar 

  • Atkinson, K. (1989). An introduction to numerical analysis (2nd ed.). . Wiley.

    MATH  Google Scholar 

  • Ayoub, A., & Filippou, F. C. (2000). Mixed formulation of nonlinear steel-concrete composite beam element. Journal of Structural Engineering, 126(3), 371–381.

    Article  Google Scholar 

  • Adjrad, A., Kachi, M. S., Bouafia, Y., & Iguetoulène, F. (2011). Nonlinear modeling structures on 3D. In Proceedings of 4th Annu.icsaam 2011. Structural Analysis of Advanced Materials, Romania, 1–9.

  • Adjrad, A., Bouafia, Y., Kachi, M. S., & Dumontet, H. (2014). Non-linear modelling of three dimensional structures taking into account shear deformation. International Journal of Engineering and Technology, 6(4), 290–298.

    Article  Google Scholar 

  • Benyahi, K., Bouafia, Y., Barboura, S., & Kachi, M. S. (2018). Nonlinear analysis and reliability of metallic truss structures. Frontiers of Structural and Civil Engineering, 12(4), 577–593.

    Article  Google Scholar 

  • Bouafia, Y. (1987). Numerical simulation of the average behavior until rupture of the beams, application to reinforced concrete, prestressed concrete and / or fiber reinforced concrete. Postgraduate Diploma (DEA). University Paris 6, France.

  • Bui, V. T., Truong, V. H., Trinh, M. C., & Kim, S. E. (2020). Fully nonlinear analysis of steel-concrete composite girder with web local buckling effects. International Journal of Mechanical Sciences, 184, 105729.

    Article  Google Scholar 

  • Chapman, J. C., & Balakrishnan, S. (1964). Experiments on composite beams. The Structural Engineer, 42(11), 369–383.

    Google Scholar 

  • Chiorean, C. G. (2013). A computer method for nonlinear inelastic analysis of 3D composite steel–concrete frame structures. Engineering Structures, 57, 125–152.

    Article  Google Scholar 

  • Chiorean, C. G. (2017). Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-rigid steel frameworks. Engineering Structures, 136, 547–579.

    Article  Google Scholar 

  • Cosgun, T., & Sayin, B. (2014). Geometric and material nonlinear analysis of three-dimensional steel frames. International Journal of Steel Structures, 14(1), 59–71.

    Article  Google Scholar 

  • Duan, S. J., Wang, J. W., Zhou, Q. D., & Wang, H. L. (2010). An experimental study on double steel–concrete composite beam specimens. In International structural engineering and construction conference; Challenges, opportunities and solutions in structural engineering and construction, London, 209–214.

  • Espion, B. (1986). Contribution to the nonlinear analysis of plane frames. Application to reinforced concrete structures, Doctoral Thesis in Applied Science, vol. 1 and 2. Free University of Brussels, Belgium.

  • El-Tawil, S., & Deierlein, G. G. (2001). Nonlinear analysis of mixed steel-concrete frames. II: Implementation and verification. Journal of Structural Engineering, 127(6), 656–665.

  • Ismail, R. E. S., El-Katt, M. T. H., Eldin, M. H. A. Z., & Kasem, M. Y. Y. (2012). Analytical modeling of nonlinear behavior of composite stub-girders. International Journal of Steel Structures, 12(4), 599–613.

    Article  Google Scholar 

  • Grelat, A. (1978). Nonlinear analysis of reinforced concrete hyperstatics frames. Doctoral thesis Engineer. University Paris 6, France.

  • Hamadeh, W. (1990). Modeling of nonlinear behavior up to the ruin of steel-concrete composite beams with an external prestressing system. Doctoral thesis. University Paris 6, France.

  • Iu, C. K., Bradford, M. A., & Chen, W. F. (2009). Second-order inelastic analysis of composite framed structures based on the refined plastic hinge method. Engineering Structures, 31(3), 799–813.

    Article  Google Scholar 

  • Jennings, A. (1968). Frame analysis including change of geometry. Journal of the Structural Division, 94(3), 627–644.

    Article  Google Scholar 

  • Jiang, X. M., Chen, H., & Liew, J. Y. R. (2002). Spread-of-plasticity analysis of three-dimensional steel frames. Journal of Constructional Steel Research, 58(2), 193–212.

    Article  Google Scholar 

  • Kachi, M. S., Fouré, B., Bouafia, Y., & Muller, P. (2006). The shear force in the modeling of the behavior until rupture of the reinforced and prestressed concrete beams. European Journal of Civil Engineering, 10(10), 1235–1264.

    Google Scholar 

  • Liang, Q. Q., Uy, B., Bradford, M. A., & Ronagh, H. R. (2005). Strength analysis of steel–concrete composite beams in combined bending and shear. Journal of Structural Engineering, 131(10), 1593–1600.

    Article  Google Scholar 

  • McGarraugh, J. B., & Baldwin, J. W. (1971). Lightweight concrete-on-steel composite beams. Engineering Journal American Institute of Steel Construction, 8(3), 90–98.

    Google Scholar 

  • Mahmoud, A. M. (2016). Finite element modeling of steel concrete beam considering double composite action. Ain Shams Engineering Journal, 7(1), 73–88.

    Article  Google Scholar 

  • Nelson, H. M., Wright, D. T., & Dolphin, J. W. (1957). Demonstrations of plastic behavior of steel frames. Journal of the Engineering Mechanics Division, 83(4), 1–37.

    Article  Google Scholar 

  • Nait-Rabah, O. (1990). Numerical simulation of nonlinear behavior of frames space. Doctoral Thesis. Central School of Paris, France.

  • Nie, J., Fan, J., & Cai, C. S. (2004). Stiffness and deflection of steel–concrete composite beams under negative bending. Journal of Structural Engineering, 130(11), 1842–1851.

    Article  Google Scholar 

  • Rules BAEL 91, revised 99 (1999). Technical rules for the design of reinforced concrete structures according to the limit states method. Publisher: Association Francaise de Normalisation.

  • Robert, F. (1999). Contribution to the geometric and material nonlinear analysis of space frames in civil engineering, application to structures. Doctoral Thesis. National Applied Sciences Institute, Lyon, France.

  • Ranzi, G., Dall’Asta, A., Ragni, L., & Zona, A. (2010). A geometric nonlinear model for composite beams with partial interaction. Engineering Structures, 32(5), 1384–1396.

  • Sargin, M. (1971). Stress–strain relationship for concrete and the analysis of structural concrete sections. University of Waterloo.

    Google Scholar 

  • Spacon, E., Fillippou, F. C., & Taucer, F. F. (1996). Fiber beam-column model for nonlinear analysis of r/c frames. Part I: Formulation. Part II: Applications. Earthquake Engineering and Structural Dynamics, 25(7):711–742.

  • Tahmasebinia, F., Ranzi, G., & Zona, A. (2012). Beam tests of composite steel-concrete members: A three-dimensional finite element model. International Journal of Steel Structures, 12(1), 37–45.

    Article  Google Scholar 

  • Thai, H. T., & Kim, S. E. (2011). Nonlinear inelastic time-history analysis of truss structures. Journal of Constructional Steel Research, 67(12), 1966–1972.

    Article  Google Scholar 

  • Uddin, M. A., Sheikh, A. H., Brown, D., Bennett, T., & Uy, B. (2018). Geometrically nonlinear inelastic analysis of steel–concrete composite beams with partial interaction using a higher-order beam theory. International Journal of Non-Linear Mechanics, 100, 34–47.

    Article  Google Scholar 

  • Virdi, K. S., & Dowling, P. J. (1973). The ultimate strength of composite columns in biaxial bending. Proceedings of the Institution of Civil Engineers, Part 2, 55(1), 251–272.

    Article  Google Scholar 

  • Yam, L. C. P., & Chapman, J. C. (1968). The inelastic behavior of simply supported composite beams of steel and concrete. Proceedings of the Institution of Civil Engineers, 41(4), 651–683.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Benyahi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyahi, K., Bouafia, Y., Oudjene, M. et al. Numerical Procedure for the Three-Dimensional Nonlinear Modelling of Composite Steel–Concrete Beams. Int J Steel Struct 21, 1063–1081 (2021). https://doi.org/10.1007/s13296-021-00490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-021-00490-1

Keywords

Navigation