Skip to main content
Log in

Infiltration of Intercumulus Liquid as a Process for the Sulfide Relocation—An Example from Low-Sulfide Mineralization of the Burakovo–Aganozero Intrusion

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A mechanism is suggested to explain the transport of sulfide material by means of its dissolution and subsequent redeposition under the effect of an ascending infiltrating flow of intercumulus melt during the compaction of cumulates in layered plutons. Evidences of this process are observable in the Burakovo–Aganozero intrusion. Analysis of data on Cu concentrations in rocks of the pluton (more than 10 000 samples of core material from 160 boreholes) reveals two distribution types of the low-sulfide mineralization. The vertical sections of the first type are characterized by mineralization distributed throughout the whole thickness of the lower unit of clinopyroxene–orthopyroxene (CpxOpx) cumulates and the almost absolute absence of sulfides in all overlying rocks. In the second type, Cu mineralization is constrained to the top part of this unit of clinopyroxene–orthopyroxene (CpxOpx) cumulates, and the overlying rock sequence of the zone of clinopyroxene–orthopyroxene–plagioclase (CpxOpxPl) cumulates includes intensely mineralized rocks. Physicochemical analysis within the scope of D.S. Korzhinskii’s theory of acid–basic interaction and numerical simulations of the effects of major components of the melt on the solubility of the sulfide phase indicate that Ca and Mg play an important role in the liquid immiscibility/dissolution of the sulfides. A model is proposed for the origin of the low-sulfide mineralization of this pluton: clinopyroxene emergence on the liquidus resulted in the onset of liquid immiscibility of sulfide and produced Cu distribution of the first type. The infiltration of the intercumulus melt during the compaction of the cumulus material led to the dissolution and upward transport of the sulfide material for hundreds of meters and thus produced Cu distribution of the second type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. I. Almukhamedov and A. Ya. Medvedev, “Sulfurization as one of the possible mechanisms of the formation of sulfide copper–nickel deposits,” Dokl. Akad. Nauk SSSR 236 (4), 965–968 (1977).

    Google Scholar 

  2. A. A. Ariskin, L. V. Danyushevsky, K. A. Bychkov, A. W. McNeill, G. S. Barmina, and G. S. Nikolaev, “Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of nickel,” Econ. Geol. 108, 1983–2003 (2013).

    Article  Google Scholar 

  3. A. A. Ariskin, K. A. Bychkov, G. S. Nikolaev, and G. S. Barmina, “The COMAGMAT-5: modeling the effect of Fe–Ni sulfide immiscibility in crystallizing magmas and cumulates,” J. Petrol. 59 (2), 283–298 (2018).

    Article  Google Scholar 

  4. D. R. Baker and R. Moretti, “Modeling the solubility of sulfur in magmas: A 50-year old geochemical challenge,” Rev. Mineral. Geochem. 73, 167–213 (2011).

    Article  Google Scholar 

  5. S. J. Barnes, J. E. Mungall, M. Le Vaillant, B. Godel, C. M. Lesher, D. Holwell, P. C. Lightfoot, N. Krivolutskaya, and B. Wei, “Sulfide–silicate textures in magmatic Ni–Cu–PGE sulfide ore deposits: disseminated and net-textured ores,” Am. Mineral. 102 (3), 473–506 (2017).

    Article  Google Scholar 

  6. A. N. Berkovskii, V. S. Semenov, S. I. Korneev, O. A. Yakovleva, B. V. Belyatskii, and N. G. Grinevich, Burakovskii–Aganozero layered complex: composition and petrologic applications, Petrology 8(6), 585–606 (2000).

    Google Scholar 

  7. A. Boudreau, Hydromagmatic Processes and Platinum–Group Element Deposits in Layered Intrusions (Cambridge University Press, Cambridge, 2019).

    Book  Google Scholar 

  8. D. R. Haughton, P. L. Roeder, and B. J. Skinner, “Solubility of sulfur in mafic magmas,” Econ. Geol. 69, 451–467 (1974).

    Article  Google Scholar 

  9. T. N. Irvine, “Infiltration metasomatism accumulate growth and double–diffusive fractional crystallization in the Muskox Intrusion and other layered intrusions,” Physics of Magmatic Processes, Ed. by R. B. Hargraves, (Princeton University Press, Princeton, 1980), pp. 325–383.

    Google Scholar 

  10. D. S. Korzhinskii, “Acid–basic interaction of components in silicate melts and direction of cotectic lines,” Dokl. Akad. Nauk SSSR 128 (2), 383–386 (1959).

    Google Scholar 

  11. W. Maier, D. Li Chusi, and S. A. de Waal, “Why are there no major Ni–Cu sulfide deposits in large layered mafic–ultramafic intrusions?” Canad. Mineral. 39, 547–556 (2001).

    Article  Google Scholar 

  12. A. A. Marakushev, “Thermodynamic calculation of basicity indices of chemical elements and simple oxides,” Essays on Physicochemical Petrology (Nauka, Moscow, 1978), Vol. 7, pp. 41–82 [in Russian].

    Google Scholar 

  13. A. A. Marakushev, Petrogenesis and Ore Formation (Geochemical Aspects) (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  14. A. A. Marakushev, N. A. Paneyakh, and I. A. Zotov, “Petrological model for the formation of Noril’sk nickel–copper deposits,” Petrology 11 (5), 476–494 (2003).

    Google Scholar 

  15. J. E. Mungall, J. M. Brenan, B. Godel, S. J. Barnes, and F. Gaillard, “Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles,” Nature Geosci. 8, 216–219(2015).

    Article  Google Scholar 

  16. A. J. Naldrett, Magmatic Sulphide Deposits: Geology Geochemistry and Exploration (Oxford University Press, New York, 2004).

    Book  Google Scholar 

  17. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, Handbook of Thermodynamic Data (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  18. G. S. Nikolaev, “Infiltration of intercumulus melt as a possible mechanism of sulfide transfer,” Proceedings of 21st International Conference Physicochemical and Petrophysical Studies in the Earth’s Science, (IGEM RAS, Moscow, 2020a), pp. 187–190.

  19. G. S. Nikolaev, “Infiltration of intecumulus melt as mechanism of sulfide transfer,” Proc. All–Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry (VESEMPG–2020), Moscow, Russia, 2020 (GEOKHI RAS, Moscow, 2020b), pp. 140–144.

  20. G. S. Nikolaev and A. A. Ariskin, “Burakovo–Aganozero layered massif in the Trans–Onega area: II. Structure of the marginal series and the estimation of the parental magma composition by geochemical thermometry techniques,” Geochem. Int. 43 (7), 646–665 (2005).

    Google Scholar 

  21. G. S. Nikolaev and D. M. Khvorov, “Burakovo–Aganozero layered massif of the Trans–Onega region: 1. Geochemical structure of the layered series,” Geochem. Int. 41 (8), 770–786 (2003).

    Google Scholar 

  22. G. S. Nikolaev, A. A. Ariskin and G. S. Barmina, Numerical modeling of the effects of major elements on the solubility of chrome–spinel and a likely solution of the problem of the origin of chromitite, Dokl. Earth Sci. 487 (1), 791–794 (2019).

    Article  Google Scholar 

  23. G. S. Nikolaev, A. A. Ariskin, and G. S. Barmina, “SPINMELT–2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 kbar: III. The effects of major components in the melt on the chrome–spinel stability and a possible solution of the problem of origin of chromitites,” Geochem. Int. 58 (1), 1–10 (2020).

    Article  Google Scholar 

  24. V. S. Semenov, S. I. Korneev, O. A. Yakovleva, S. V. Semenov, A. B. Koltsov, N. G. Grinevich, and A. Kh. Zil’bershtein, “Distribution of Fe–Ni–Cu sulfide mineralization in the rocks of the Burakovsko–Aganozerskii layered intrusion,” Petrology 12 (3), 265–281 (2004).

    Google Scholar 

  25. E. V. Sharkov, O. A. Bogatikov, N. F. Pchelintseva, E. V. Koptev–Dvornikov, V. S. Semenov, T. L. Grokhovskaya, G. S. Nikolaev, and A. V. Chistyakov, “Propsects of platinum potential of the Early Proterozoic Burakovsky layered intrusions in Southern Karelia,” Platinum of Russia. Problems of Evolution of Mineral–Raw Base of Platinum Metals. Proc. 3 rd Proc. of Scientific–Methodical Council on the Russia’s Platinum Program) (Geoinformmark, Moscow, 1995), Vol. 2, book 2, pp. 10–19 [in Russian].

  26. E. V. Sharkov, O. A. Bogatikov, T. L. Grokhovskaya, A. V. Chistyakov, V. A. Ganin, N. G. Grinevich, G. A. Snyder, and L. A. Taylor, “Petrology and Ni–Cu–Cr–PGE mineralization of the largest mafic pluton in Europe: The earlyProterozoic Burakovsky layered intrusion, Karelia, Russia,” Int. Geol. Rev. 37, 509–525 (1995).

    Article  Google Scholar 

  27. E. M. Spiridonov, “Ore-magmatic systems of the Noril’sk ore field,” Russ. Geol. Geophys., No. 9, 1356–1378 (2010).

  28. S. S. Sun, R. W. Nesbitt, and M. T. McCulloch, “Geochemistry and petrogenesis of Archaean and Early Proterozoic siliceous high–magnesium basalts,” Boninites and Related Rocks, Ed. by A. J. Crawford (Unwin Hyman, London, 1989), pp. 148–173.

    Google Scholar 

  29. V. A. Zharikov, Principles of Physical Geochemistry (Mosk. Univ.–Nauka, Moscow, 2005) [in Russian]

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks O.I. Yakovlev (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) for discussions, recommendations, and support.

Funding

This study was carried out under a government-financed research project for the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Nikolaev.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, G.S. Infiltration of Intercumulus Liquid as a Process for the Sulfide Relocation—An Example from Low-Sulfide Mineralization of the Burakovo–Aganozero Intrusion. Geochem. Int. 59, 491–500 (2021). https://doi.org/10.1134/S0016702921050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921050050

Keywords:

Navigation