Skip to main content
Log in

Early Neoproterozoic Metapicrite–Basalt Association of the Angara Region, Yenisei Ridge: Petrogeochemical Composition, Tectonic Settings, and Pb–Zn Mineralization

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In the Angara part of the Yenisei Ridge, a sequential section of the metapicritic–basalt sequence and overlying carbonate rocks of the Gorevskaya Formation is established. This section is considered as a single volcanic–sedimentary complex formed at the Late Mesoproterozoic–Early Neoproterozoic boundary in the riftogenic marginal–continental paleobasin in the southwestern Siberian Craton. It is proposed to introduce the metapicrite–basaltic sequence into the stratigraphic legend of the Shirokaya Group of the western Yenisei Ridge under the name “Nizhnerechinskaya Sequence”. In the studied section, metamorphosed picrobasalts and picrites predominate in the lower part of the Nizhnerechinskaya Sequence, while the middle and upper parts consist mainly of basalts containing Pb–Zn mineralization (Stepanovsky ore occurrence). At the contact with carbonate deposits of the Gorevskaya Formation, an alternation of volcanogenic rocks and terrigenous–carbonate sediments and metabasaltic sills are observed. The petrochemical and trace-element composition of metavolcanic rocks has much in common, which indicates the paragenetic relationship of rocks of this high-Mg rock association. All these rocks are enriched in Fe and Ti, while metabasalts and metagabbros show elevated alkalinity and P2O5 content. In terms of total alkalinity, metabasalt–picrobasalts deviate from the normal petrochemical series towards the subalkaline series, which correlates with their elevated Ti content. Basites enriched in alkalis, especially, in potassium and corresponding to trachybasalts are observed among them. The contents of incompatible trace elements clearly increase from picrites to basalts and reach maximum in trachybasalts, which show 1.5–3 times enrichment in high-field strength elements compared to the basalts. The paragenetic nature of the considered association is supported by the similar REE distribution patterns: (La/Yb)n = 6–7 at Eu/Eu* = 0.9–1. The Late Mesoproterozoic–Early Neoproterozoic rifting of the Earth’s crust in the Angara region led to the opening of the marginal–continental sea basin, where basalt-picrite volcanism occurred simultaneously with accumulation of terrigenous–carbonate sediments, including ore–bearing (Pb–Zn) rocks of the Gorevskaya Formation, which host the Gorevskoye Pb–Zn deposit. The basin under consideration is interpreted as a relict rift-related paleobasin on the western margin of the Siberian craton, while the volcanic–sedimentary Nizhnerechinskaya Sequence is considered as the lower potential stratigraphic level of the base-metal mineralization in the Gorevsky ore field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Base Metal Mineralization of the Yenisei Ridge, Ed. by G. N. Brovkov and N. A. Okhapkin, (KN, Krasnoyarsk, 1976 E. V. Bibikova, T. V. Gracheva, V. A. Makarov, and A. D. Nozhkin, “Age boundaries in the Early Precambrian geological evolution of the Yenisei Range,” Stratigraphy. Geol. Correlation 1 (1), 35–40 (1993).

  2. Yu. A. Bogdanov, A. P. Lisitsyn, A. M. Sagalovich, and E. G. Gurvich, Ocean-Floor Hydrothermal Ore Genesis (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  3. W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” In Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  4. G. N. Brovkov, A. E. Miroshnikov, and N. A. Okhapkin, “Genetic models of formations of base metal deposits of the Yenisei Range,” Genetic models of Endogenous Ore Formations. Volume 2. Tin–Tungsten, Base Metal, and Gold Deposits (Nauka, Novosibirsk, 1983), pp. 121–126 [in Russian].

  5. G. N. Brovkov, and N. A. Okhapkin, “Some problems of genesis of base metal ores of the Yenisei Range,” Base Metal Mineralization of the Yenisei Range (SNIIGGIMS, Krasnoyarsk, 1976), pp., 99–114 [in Russian].

  6. A. I. Chernykh, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (OIGGM SO RAN, Novosibirsk, 2000) [in Russian].

  7. K. Condie, “High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?,” Lithos 79, 491–504 (2005).

    Article  Google Scholar 

  8. R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. H. Li, “Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents,” Precambrian Res. 160, 159–178 (2008).

    Article  Google Scholar 

  9. J. G. Fitton, A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor “Thermal and chemical structure of the Iceland plume,” Earth Planet. Sci. Lett. 153, 197–208 (1997).

    Article  Google Scholar 

  10. L K. Kachevsky, G. I. Kachevskaya, and Zh. M. Grabovskaya, Geological Map of the Yenisei Ridge. Scale 1 : 500 000, Ed. by A. K. Mkrtych’yan and M. L. Sherman (Krasnoyarsk, Krasnoyarskgeols’emka, 1998) [in Russian].

  11. L K. Kachevsky and V. K. Zuev, Geological Map of the Yenisei Metallogenic Province. Scale 1 : 1000000 (Krasnoyarsk, Krasnoyarskgeols’emka, 2005) [in Russian].

  12. E. M. Khabarov, “Formations and evolution of Riphean sedimentation of the eastern zones of the Yenisei Ridge,” Geol. Geofiz. 35 (10), 44–54 (1994).

    Google Scholar 

  13. T. N. Kheraskova, “New data on the structure of the Yenisei Range,” Geotectonics 33 (1), 12–23 (1999).

    Google Scholar 

  14. B. B. Kochnev, A. B. Kuznetsov, B. G. Pokrovsky, D. R. Sitkina and Z. B. Smirnova, “C and Sr isotope chemostratigraphy and Pb–Pb age of carbonate deposits of the Vorogovka Group (Neoproterozoic), northwest of the Yenisei Range,” Stratigraphy. Geol. Correlation 27 (5), 588–602 (2019).

    Article  Google Scholar 

  15. T. Ya. Kornev, A. G. Ekanin, and A. P. Romanov, Rybinskii Standard of the Poputninskoe Komatiite–Basalt Complex, Yenisei Ridge (SNIIGGiMS, Novosibirsk, 1998) [in Russian].

  16. S. N. Korobeinikov, O. P. Polyansky, I. I. Likhanov, V. G. Sverdlova, and V. V. Reverdatto, “Mathematical modeling of overthrusting as a cause of andalusite–kyanite metamorphic zoning in the Yenisei Ridge,” Dokl. Earth Sci. 408 (4), 652–656 (2006).

    Article  Google Scholar 

  17. P. S. Kozlov, Yu. F. Filippov, I. I. Likhanov and A. D. Nozhkin, “Geodynamic model of the Neoproterozoic evolution of the Yenisei paleosubduction zone (western margin of the Siberian Craton), Russia,” Geotectonics 54 (1), 54–67 (2020).

    Article  Google Scholar 

  18. A. B. Kuznetsov, B. B. Kochnev, I. M. Vasilyeva and G. V. Ovchinnikova, “The Upper Riphean of the Yenisei Range: Sr chemostratigraphy and Pb–Pb age of limestones of the Tungusik and Shirokaya Groups,” Stratigraphy. Geol. Correlation 27 (5), 538–554 (2019).

    Article  Google Scholar 

  19. Yu. A. Kuznetsov, Precambrian Petrology of the South Yenisei Ridge (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  20. Legend of the Yenisei Group of the State Geological Map of the Russian Federation on a Scale 1 : 200000, Ed. by L. K. Kachevsky (Krasnoyarskgeols’emka, Krasnoyarsk, 2002) [in Russian].

  21. I. I. Likhanov and V. V. Reverdatto, “Geochemistry, petrogenesis and age of metamorphic rocks of the Angara Complex at the junction of south and north Yenisei Ridge,” Geochem. Int. 54 (2), 127–148 (2016).

    Article  Google Scholar 

  22. I. I. Likhanov and M. Santosh, “Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent,” Precambrian Res. 300, 315–331 (2017).

    Article  Google Scholar 

  23. I. I. Likhanov and M. Santosh, “A-type granites in the western margin of the Siberian Craton: implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia,” Precambrian Res. 328, 128–145 (2019).

    Article  Google Scholar 

  24. I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, and I. Memmi, “Evidence from Fe– and Al–rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, eastern Siberia,” J. Metamorph. Geol. 22 (8), 743–762 (2004).

    Article  Google Scholar 

  25. I. I. Likhanov, V. V. Reverdatto, and A. Yu. Selyatitskii, “Mineral equilibria and P-T diagram for Fe–Al metapelites in the KFMASH system (K2O–FeO–MgO–Al2O3–SiO2–H2O),” Petrology 13 (1), 73–83 (2005).

    Google Scholar 

  26. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and V. V. Khiller, “Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology,” Dokl. Earth Sci. 450 (1), 556–561 (2013).

    Article  Google Scholar 

  27. I. I. Likhanov, A. D. Nozhkin, V. V. Reverdatto, A. A. Krylov, P. S. Kozlov, and V. V. Khiller, “Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the South Yenisei Ridge and tectonic implications,” Petrology 24 (4), 392–408 (2016).

    Article  Google Scholar 

  28. I. I. Likhanov, A. D. Nozhkin and K. A. Savko, “Accretionary tectonics of rock complexes in the western margin of the Siberian Craton,” Geotectonics 52 (1), 22–44 (2018).

    Article  Google Scholar 

  29. I. I. Likhanov, J.-L. Régnier, and M. Santosh, “Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean,” Lithos 304–307, 468–488 (2018).

    Article  Google Scholar 

  30. M. A. Meschide, “A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb–Zr–Y diagram,” Chem. Geol. 56, 207–218 (1986).

    Article  Google Scholar 

  31. D. V. Metelkin, Evolution of Central Asian Structures and Role of Strike Slip Tectonics: Evidence from Paleomagnetic Data (INGG SO RAN, Novosibirsk, 2012) [in Russian].

    Google Scholar 

  32. D. V. Metelkin, V. A. Vernikovsky, and A. Yu. Kazansky, “Neoproterozoic evolution of Rodinia: constraints from new paleomagnetism data on the western margin of the Siberian Craton, Russ. Geol. Geophys. 48 (1), 32–45 (2007).

    Article  Google Scholar 

  33. A. D. Nozhkin and O. M. Turkina, Geochemistry of Granulites of the Kan and Sharyzhalgai Complexes (SO AN SSSR, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  34. A. D. Nozhkin, O. M. Turkina, Yu. K. Sovetov, and A. V. Travin, “The Vendian accretionary event in the southwestern margin of the Siberian Craton,” Dokl. Earth Sci. 415 (6), 869–873 (2007).

    Article  Google Scholar 

  35. A. D. Nozhkin, O. M. Turkina, T. B. Bayanova, N. G. Berezhnaya, A. N. Larionov, A. A. Postnikov, A. V. Travin, and R. E. Ernst, “Neoproterozoic rift and within–plate magmatism in the Yenisei Ridge: implications for the breakup of Rodinia,” Russ. Geol. Geophys. 49 (7), 503–519 (2008).

    Article  Google Scholar 

  36. A. D. Nozhkin, A. S. Borisenko, and P. A. Nevol’ko, “Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge,” Russ. Geol. Geophys. 52 (1), 124–143 (2011).

    Article  Google Scholar 

  37. A. D. Nozhkin, L. K. Kachevskii, and N. V. Dmitrieva, “the late neoproterozoic rift-related metarhyolite–basalt association of the Glushikha trough (Yenisei ridge): geochemical composition, age, and formation conditions,” Russ. Geol. Geophys. 54 (1), 44–54 (2013).

    Article  Google Scholar 

  38. A. D. Nozhkin, O. M. Turkina, I. I. Likhanov, N.V. Dmitrieva, “ Late Paleoproterozoic volcanic associations in the southwestern Siberian Craton (Angara–Kan Block),” Russ. Geol. Geophys. 57 (2), 247–264 (2016).

    Article  Google Scholar 

  39. A. D. Nozhkin, O. M. Turkina, and I. I. Likhanov, “Late Neoproterozoic island-arc volcanic associations in the accretion belt at the southwestern margin of the Siberian Craton (Predivinsky Terrain of the Yenisei Ridge),” Geochem. Int. 58(9) 1004–1026 (2020).

    Article  Google Scholar 

  40. N. P. Okhapkin, “Lower Angara stablizied block as a new type of Riphean ore-controlling structures of the Yenisei Ridge,” Dokl. Akad. Nauk SSSR 253 (4), 939–941.

  41. I. V. Pisarev, “Type section of the Sukhoi Khrebet Formation in the Gorevskoe Deposit area,” Sedimentary Ore Formation. Volume 1. Composition and Genesis of Ore–Bearing Sedimentary Sequences of Siberia, Ed. by Yu. N. Zenin and M. P. Mazurov (IGiG, Novosibirsk, 1990), pp. 114–126 [in Russian].

  42. V. G. Ponomarev and Yu. A. Zabirov, Prospecting Features and Estimated Criteria for Lead–Zinc Mineralization of the Yenisei Ridge (IGiG, Novosibirsk, 1988) [in Russian].

  43. V. G. Ponomarev V. A. Aakimtsev, S. V. Saraev, and E. F. Doil’nitsyn, “Isotope-geochemical indicators of stratiform lead–zinc mineralization of the Angara ore district, Yenisei Ridge, Isotope Studies of Ore Formation (Nauka, Novosibirsk, 1991), pp. 56–83 [in Russian].

    Google Scholar 

  44. V. G. Ponomarev V. A. Aakimtsev, Yu. A. Zabirov, and S. V. Saraev, “Methodological principles of formation of stratiform lead–zinc occurrences in the terrigenous–carbonate sequences,” Genetic Models of Stratiform Lead and Zinc Deposits, Ed. by E. G. Distanov, (Nauka, Novosibirsk, 1991a), pp. 13–41 [in Russian].

    Google Scholar 

  45. Precambrian Crystalline Complexes of the Yenisei Ridge. A Guidebook of the Yenisei Excursion of the 7 th All-Union Petrographic Conference, Ed. by V. V. Reverdatto and V. V. Khlestov (IGiG, Novosibirsk, 1986) [in Russian].

  46. S. V. Saraev, “Lithology and geochemistry of Riphean sediments of the Gorevskoe ore field (Yenisei Ridge),” Sedimentary Ore Formation. Volume 1. Composition and Genesis of Ore-Bearing Sedimentary Sequences of Siberia, Ed. by Yu. N. Zenin and M. P. Mazurov (IGiG, Novosibirsk, 1990), pp. 42–71 [in Russian].

  47. S. V. Saraev, “Sedimentology and Mineral Resources of the Upper Riphean Marginal Basin of yeh Yenisei Ridge,” Metallogeny of Fold Systems in Light of Plate Tectonic Model (IGG UrO, Yekaterinburg, 1994), pp. 97–99 [in Russian].

    Google Scholar 

  48. S. V. Saraev, “Upper Riphean deep-water marginal (back-arc) basin of the Yenisei Ridge,” Proc. of Conference “Russian Foundation for Basic Research in the Siberian Region (Earth’s Crust and Mantle), (IZK So RAN, Irkutsk, 1995), pp. 75–76

  49. S. V. Saraev, and I. D. Timoshina, “Precambrian carbon-bearing formations of the Yenisei Ridge: lithostratigraphy, sedimentology, and geochemistry,” Carbon-Bearing Formations in the Geological History (IG Kar NTs, Petrozavodsk, 1998), pp. 45–49 [in Russian].

  50. V. Yu. Shenail, Late Precambrian of the Siberian Platform (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  51. K. Stewart and N. Rogers, “Mantle plume and lithosphere contributions to basalts from southern Ethiopia,” Earth Planet. Sci. Lett. 139, 195–211 (1996).

    Article  Google Scholar 

  52. T. P. Strizhma, “Composition of carbonate rocks of the Tokma Formation of the Gorevskoe deposit,” Geology and Prospective Estimate of Ore Districts of the Krasnoyarsk Krai (IGiG SO RAN, Novosibirsk, 1985), pp. 67–72 [in Russian].

  53. Sun S. S. and W.F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  54. A. E. Vernikovskaya, V. A. Vernikovsky, E. B. Sal’nikova, A. B. Kotov, V. P. Kovach, A. V. Travin, S. V. Palesskii, S. Z. Yakovleva, A. M. Yasenev, and A. M. Fedoseenko, “Neoproterozoic postcollisional granitoids of the Glushikha Complex, Yenisei Range,” Petrology 11 (1), 48–61 (2003).

    Google Scholar 

  55. V. Vernikovsky, A. Vernikovskaya, A. E. A. D. Nozhkin, V. A. Ponomarchuk, “Riphean ophiolites of the Isakovsky Belt, Yenisei Ridge,” Geol. Geofiz. 45 (7–8), 169–180 (1994).

    Google Scholar 

  56. V. A. Vernikovsky, A. Yu. Kazansky, N. Yu. Matushkin, D. V. Metelkin, and Yu. K. Sovetov, “The geodynamic evolution of the folded framing and the western margin of the Siberian Craton in the Neoproterozoic: ecological, structural, sedimentological, geochronological and paleomagnetic data,” Russ. Geol. Geophys. 50 (4), 372–387 (2009).

    Article  Google Scholar 

  57. I. A. Vishnevskaya, B. B. Kochnev, E. F. Letnikova, A. B. Kuznetsov, and A. I. Proshenkin, “Sr Isotopic characteristic of Neoproterozoic carbonate sediments from the southern Yenisei Ridge,” Dokl. Earth Sci. 443 (4), 431–435 (2012).

    Article  Google Scholar 

  58. D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  59. Yu. A. Zabirov, V. A. Akimtsev, N. Kh. Brandner, P. S. Kozlov, M. M. Lapshin, V. G. Ponomarev, S. V. Saraev, and G. I. Tanygin, “Lithotectonic direction in the evolution of formational analysis during large–scale prospecting works,” Lithological Methods during detailed Subdivision and Correlation of Sedimentary Sequences (Nauka, Novosibirsk, 1990), pp. 90–97 (1990).

    Google Scholar 

  60. V. Yu. Zabrodin, Shear Zones (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

Download references

Funding

The studies were carried out in the framework of the State Tasks of the Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences (Novosibirsk) and Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg (project no. АААА-А18-118052590032–6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Nozhkin, P. S. Kozlov, I. I. Likhanov, S. V. Zinoviev or A. A. Krylov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozhkin, A.D., Kozlov, P.S., Likhanov, I.I. et al. Early Neoproterozoic Metapicrite–Basalt Association of the Angara Region, Yenisei Ridge: Petrogeochemical Composition, Tectonic Settings, and Pb–Zn Mineralization. Geochem. Int. 59, 455–473 (2021). https://doi.org/10.1134/S0016702921050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921050062

Keywords:

Navigation