Skip to main content
Log in

Applied Finite Element Procedure for Morphing Wing Design

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Bistable composite laminates provide an appealing platform for morphing applications. On the other hand they exhibit geometrically nonlinear behavior and they are sensitive to imperfections. Their curing behavior dictates bifurcation buckling analysis while their actuation requires snapthrough buckling analysis. This work proposes a generalized finite element analysis procedure applying Koiter’s asymptotic postbuckling theory to address their curing and actuation. Initially the postbuckling theory is discussed providing essential aspects required for its application into finite element analysis. A generalized scheme is established for the Koiter-based procedure to enable its incorporation into design optimization routines. To prove its generality, the procedure is implemented into three finite element commercial codes, namely, ABAQUS, ANSYS and LS-DYNA. Best practices for these implementations are provided, then their accuracies are assessed through multiple comparisons with published data. Moreover, Hyper-Elliptic Cambered Span (HECS) Wing design is developed utilizing bistable laminates. Stability characteristics of several design variations of the morphing HECS wing are assessed using the developed procedure. The Koiter-based finite element procedure is proven to be both general and suitable for implementation in different finite element codes to address designs with complex geometry. Therefore, this work provides a unique platform for novel designs employing bistable composites in various engineering applications. Furthermore, it presents a general framework to implement Koiter’s asymptotic postbuckling theory in finite element codes for bifurcation buckling and post-buckling studies of imperfection-sensitive structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All the data used in this work is available in the manuscript.

References

  1. Emam, S. A., and Inman, D. J.: “A Review on Bistable Composite Laminates for Morphing and Energy Harvesting,” Appl. Mech. Rev., 67(6), (2015)

  2. Zhang, Z., Li, Y., Yu, X., Li, X., Wu, H., Wu, H., Jiang, S., Chai, G.: “Bistable Morphing Composite Structures: A Review. Thin Wall. Struct. 142, 74–97 (2019)

    Article  Google Scholar 

  3. Hyer, M.W.: Some Observations on the Cured Shape of Thin Unsymmetric Laminates. J. Compos. Mater. 15(2), 175–194 (1981)

    Article  Google Scholar 

  4. Hyer, M.W.: Calculations of the Room-Temperature Shapes of Unsymmetric Laminates. J. Compos. Mater. 15, 296–310 (1981)

    Article  Google Scholar 

  5. Hyer, M.W.: The Room-Temperature Shapes of Four-Layer Unsymmetric Cross-Ply Laminates. J. Compos. Mater. 16(4), 318–340 (1982)

    Article  Google Scholar 

  6. Akira, H., Hye, M.W.: “Non-Linear Temperature-Curvature Relationships for Unsymmetric Graphite-Epoxy Laminates. Int. J. Solids Struct. 23(7), 919–935 (1987)

    Article  Google Scholar 

  7. Dano, M.-L., Hyer, M.W.: The Response of Unsymmetric Laminates to Simple Applied Forces. Mech. Compos. Mater. Struct. 3(1), 65–80 (1996)

    Article  Google Scholar 

  8. Dano, M.-L.: “SMA-Induced Deformations in General Unsymmetric Laminates,” PhD Dissertation, Virginia Tech (1997)

  9. Dano, M.L., Hyer, M.W.: “Thermally-Induced Deformation Behavior of Unsymmetric Laminates. Int. J. Solids Struct. 35(17), 2101–2300 (1998)

    Article  Google Scholar 

  10. Dano, M.L., Hyer, M.W.: Snap-through of Unsymmetric Fiber-Reinforced Composite Laminates. Int. J. Solids Struct. 39(1), 175–198 (2001)

    Article  Google Scholar 

  11. Schultz, M.R., Hyer, M.W.: Snap-through of Unsymmetric Cross-Ply Laminates Using Piezoceramic Actuators. J. Intel. Mat. Syst. Str. 14(12), 795–814 (2003)

    Article  Google Scholar 

  12. Schultz, M.R., Hyer, M.W.: “A Morphing Concept Based on Unsymmetric Composite Laminates and Piezoceramic Actuators, M.F.C.” AIAA/ASME/ASCE/AHS/ASC Struct. Dyn. and Mat. Conf. 3192–3204 (2004)

  13. Schlecht, M., Schulte, K., Hyer, M.W.: Advanced Calculation of the Room-Temperature Shapes of Thin Unsymmetric Composite Laminates. J. Compos. Struct. 32(1–4), 627–633 (1995)

    Article  Google Scholar 

  14. Schlecht, M., Schulte, K.: Advanced Calculation of the Room-Temperature Shapes of Unsymmetric Laminates. J. Compos. Mater. 33(16), 1472–1490 (1999)

    Article  CAS  Google Scholar 

  15. Koiter, W.T.: “On the Stability of Elastic Equilibrium,” PhD Thesis, Delft University (1945)

  16. Amazigo, J.C.: “Buckling of Stochastically Imperfect Structures. In: Budiansky B. (Eds) Buckling of Structures, pp. 172–182. Springer, Berlin (1976)

    Chapter  Google Scholar 

  17. Elishakoff, I.: Buckling of a Stochastically Imperfect Finite Column on a Nonlinear Elastic Foundation: A Reliability Study. J. Appl. Mech. Trans. ASME 46(2), 411–416 (1979)

    Article  Google Scholar 

  18. Arbocz, J., Hol, J.M.A.M.: Collapse of Axially Compressed Cylindrical Shells with Random Imperfections*. Thin-Walled Struct. 23(1–4), 131–158 (1995)

    Article  Google Scholar 

  19. Tawfik, S.A., Tan, X., Ozbay, S., Armanios, E.: “Modeling of Anticlastic Stability in Elastically Tailored Composites,” 20th Annual Technical ASC Conference, Drexel University, Philadelphia (2005)

  20. Tawfik, S., Tan, X., Ozbay, S., Armanios, E.: Anticlastic Stability Modeling for Cross-Ply Composites. J. Compos. Mater. 41(11), 1325–1338 (2007)

    Article  CAS  Google Scholar 

  21. Tawfik, S.A.: Stability and morphing characteristics of bistable composite laminates (Doctoral dissertation, Georgia Institute of Technology) (2008)

  22. Tawfik, S.A., Dancila, Stefan, Armanios, E.: Planform Effects upon the Bistable Response of Cross-Ply Composite Shells. Compos. Part A Appl. Sci. Manuf. 42(7), 825–833 (2011)

    Article  Google Scholar 

  23. Mattioni, F., Weaver, P.M., Potter, K., Friswell, M.I.: “The Analysis of Cool-down and Snap-through of Cross-Ply Laminates Used as Multi-Stable Structures,” 2006 ABAQUS UK User Group Conference, Manchester (2008)

  24. Mattioni, F., Gatto, A., Weaver, P., Firiswell, K.D., Potter, K.D.: The application of residual stress tailoring of snap-through composites for variable sweep wings, Proc. 47th AIAA/ASME/ASCE/AHS/ASC Struct. Dyn. Mat. Conf., Newport, Rhode Island, 1972 (2008)

  25. Mattioni, F., Weaver, P.M., Potter, K.D., Friswell, M.I.: The application of thermally induced multistable composites to morphing aircraft structures, PROC SPIE 6930(2) (2008)

  26. Diaconu, C.G., Weaver, P.M., Mattioni, F.: Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin Wall. Struct. 46(6), 689–701 (2008)

    Article  Google Scholar 

  27. Schultz, M.R.: A concept for airfoil-like active bistable twisting structures. J. Intel. Mat. Syst. Str. 19(2), 157–169 (2008)

    Article  Google Scholar 

  28. Gatto, A., Mattioni, F., Friswell, M.I.: Experimental investigation of bistable winglets to enhance aircraft wing lift takeoff capability. J. Aircraft 46(2), 647–655 (2009)

    Article  Google Scholar 

  29. Arrieta, A.F., Kuder, I.K., Rist, M., Waeber, T., Ermanni, P.: Passive load alleviation aerofoil concept with variable stiffness multi-stable composites. Compos. Struct. 116, 235–242 (2014)

    Article  Google Scholar 

  30. Daynes, S., Lachenal, X., Weaver, P.M.: Concept for morphing airfoil with zero torsional stiffness. Thin Wall. Struct. 94, 129–134 (2015)

    Article  Google Scholar 

  31. Kuder, I.K., Fasel, U., Ermanni, P., Arrieta, A.F.: Concurrent design of a morphing aerofoil with variable stiffness bi-stable laminates. Smart Mater. Struct. 25(11), 115001 (2016)

  32. Giddings, P.F., Kim, H.A., Salo, A.I., Bowen, C.R.: Modelling of piezoelectrically actuated bistable composites. Mater. Lett. 65(9), 1261–1263 (2011)

    Article  CAS  Google Scholar 

  33. Giddings, P., Bowen, C.R., Butler, R., Kim, H.A.: Characterisation of actuation properties of piezoelectric bi-stable carbon-fibre laminates. Compos. Part A: Appl. Sci. Manufac. 39(4), 697–703 (2008)

    Article  Google Scholar 

  34. Kim, H.A., Betts, D.N., Salo, A.I., Bowen, C.R.: Shape memory alloy-piezoelectric active structures for reversible actuation of bistable composites. AIAA journal 48(6), 1265–1268 (2010)

    Article  Google Scholar 

  35. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates, and Shells. McGraw-Hill, New York (1975)

    Book  Google Scholar 

  36. Riks, E.: An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15(7), 529–551 (1979)

    Article  Google Scholar 

  37. Jones, R.M.: “Mechanics of Composite Materials,” CRC press (1999)

  38. Abaqus Documentation, Dassault Systèmes, Providence, Rhode Island

  39. ANSYS.: Inc. “ANSYS 12.0 User Manual.” Canonsburg, PA (2014)

  40. LS-DYNA.: LS-DYNA User’s Manual, Livermore Software Technology Corporation, CA, USA (2013)

  41. Bathe, K.: Finite Element Procedures, Klaus-Jurgen Bathe (2006)

  42. Dai, F., Li, H., Du, S.: Cured shapes of bi-stable cfrp composite laminates with the side length exceeding a critical value. Appl. Compos. Mater. 20(4), 505–516 (2013)

    Article  Google Scholar 

  43. Simitses, G., Hodges, D.: Fundamentals of Structural Stability, Elsevier (2006)

  44. Wiggins, L., Stubbs, M., Johnston, C., Robertshaw, H., Reinholtz, C., Inman, D.: A design and analysis of a morphing hyper-elliptic cambered span (HECS) wing. 45th AIAA/ASME/ASCE/AHS/ASC Struct.l Dyn. Mater. Conf. (p. 1885) (2004)

  45. Stubbs, M.D.: Kinematic design and analysis of a morphing wing (Doctoral dissertation, Virginia Tech) (2003)

  46. Wiggins, I.I.I., L.D.: Structural Design and Analysis of a Kinematic Mechanism for a Morphing Hyper-Elliptic Cambered Span (HECS) Wing (Doctoral dissertation, Virginia Tech) (2003)

  47. Burkett, C.W.: Reductions in induced drag by the use of aft swept wing tips. Aeronaut. J. 93(930), 400–405 (1989)

    Google Scholar 

  48. Cone, C.D.: “The Theory of Induced Lift and Minimum Induced Drag on Non-Planar Lifting Systems,” NASA TR-R-139 (1962)

  49. Manzo, J.: Analysis and design of a hyper-elliptical cambered span morphing aircraft wing. (Master thesis, Cornell University) (2006)

  50. Lazos, B., Visser, K.: Aerodynamic comparison of Hyper-Elliptic cambered span (HECS) Wings with conventional configurations. 24th AIAA Appl. Aero. Conf. (p. 3469) (2006)

  51. Daynes, S., Weaver, P.M., Potter, K.D.: Aeroelastic study of bistable composite airfoils. J. Aircr. 46(6), 2169–2174 (2009)

    Article  Google Scholar 

  52. Daynes, S., Nall, S.J., Weaver, P.M., Potter, K.D., Margaris, P., Mellor, P.H.: Bistable composite flap for an airfoil. J. Aircr. 47(1), 334–338 (2010)

    Article  Google Scholar 

  53. Bilgen, O., Arrieta, A.F., Friswell, M.I., Hagedorn, P.: Dynamic control of a bistable wing under aerodynamic loading. Smart Mater. Struct. 22(2), 025020 (2013)

  54. Arrieta, A.F., Bilgen, O., Friswell, M.I., Ermanni, P.: Modelling and configuration control of wing-shaped bi-stable piezoelectric composites under aerodynamic loads. Aerosp. Sci. Technol. 29(1), 453–461 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Engineering Research Council of Canada (NSERC) and Discovery Grant Program. Their supports are gratefully acknowledged.

Funding

This work is sponsored by the Engineering Research Council of Canada (NSERC) and Discovery Grant Program (NSERC DG no. 2015–06346).

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design [Sam Nakhla]. Material preparation and data collection [Sam Nakhla] and [Ahmed Elruby]. Analyses were performed [Ahmed Elruby] and [Sam Nakhla]. Software simulations [Ahmed Elruby] and [Sam Nakhla]. Validation and verification of results [Sam Nakhla] and [Ahmed Elruby]. The first draft of the manuscript was written by [Sam Nakhla] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Funding acquisition [Sam Nakhla].

Corresponding author

Correspondence to Sam Nakhla.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1.9 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhla, S., Elruby, A.Y. Applied Finite Element Procedure for Morphing Wing Design. Appl Compos Mater 28, 1193–1220 (2021). https://doi.org/10.1007/s10443-021-09886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09886-y

Keywords

Navigation