Skip to main content
Log in

Weak curvatures of irregular curves in high-dimensional Euclidean spaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We deal with a robust notion of weak normals for a wide class of irregular curves defined in Euclidean spaces of high dimension. Concerning polygonal curves, the discrete normals are built up through a Gram–Schmidt procedure applied to consecutive oriented segments, and they naturally live in the projective space associated with the Gauss hyper-sphere. By using sequences of inscribed polygonals with infinitesimal modulus, a relaxed notion of total variation of the jth normal to a generic curve is then introduced. For smooth curves satisfying the Jordan system, in fact, our relaxed notion agrees with the length of the smooth jth normal. Correspondingly, a good notion of weak jth normal of irregular curves with finite relaxed energy is introduced, and it turns out to be the strong limit of any sequence of approximating polygonals. The length of our weak normal agrees with the corresponding relaxed energy, for which a related integral-geometric formula is also obtained. We then discuss a wider class of smooth curves for which the weak normal is strictly related to the classical one, outside the inflection points. Finally, starting from the first variation of the length of the weak jth normal, a natural notion of curvature measure is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexandrov, A.D., Reshetnyak, Yu.G.: General Theory of Irregular Curves. Mathematics and Its Applications. Soviet Series. Kluwer, Dordrecht (1989)

    Book  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Banchoff, T.F.: Global geometry of polygons. III. Frenet frames and theorems of Jacobi and Milnor for space polygons. Rad Jugoslav. Akad. Znan. Umjet. 396, 101–108 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Cantarella, J., Fu, J.H.G., Kusner, R., Sullivan, J.M., Wrinkle, N.C.: Criticality for the Gehring link problem. Geom. Topol. 10, 2055–2116 (2006)

    Article  MathSciNet  Google Scholar 

  5. Fáry, I.: Sur la courbure totale d’une courbe gauche faisant un noeud. Bull. Soc. Math. France 77, 128–138 (1949)

    Article  MathSciNet  Google Scholar 

  6. Gluck, H.: Higher curvatures of curves in Euclidean space. Amer. Math. Monthly 73, 699–704 (1966)

    Article  MathSciNet  Google Scholar 

  7. Gutkin, E.: Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds. J. Geom. Phys. 61, 2147–2161 (2011)

    Article  MathSciNet  Google Scholar 

  8. Jordan, C.: Sur la théorie des courbes dans l’espace à \(n\) dimensions. C. R. Acad. Sci. Paris 79, 795–797 (1874)

    MATH  Google Scholar 

  9. Milnor, J.W.: On the total curvature of knots. Ann. of Math. 52, 248–257 (1950)

    Article  MathSciNet  Google Scholar 

  10. Mucci, D., Saracco, A.: The weak Frenet frame of non-smooth curves with finite total curvature and absolute torsion. Ann. Mat. Pura Appl. 199, 2459–2488 (2020)

    Article  MathSciNet  Google Scholar 

  11. Penna, M.A.: Total torsion. Amer. Math. Monthly 87, 452–461 (1980)

    Article  MathSciNet  Google Scholar 

  12. Reshetnyak, Yu.G.: The theory of curves in differential geometry from the point of view of the theory of functions of a real variable. Russian Math. Surveys 60, 1165–1181 (2005)

    Article  MathSciNet  Google Scholar 

  13. Sullivan, J.M.: Curves of finite total curvature. In: Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G. (eds.) Discrete Differential Geometry. Oberwolfach Seminars, vol. 38. Birkäuser, Boston (2008)

    Google Scholar 

Download references

Acknowledgements

The research of D.M. was partially supported by the GNAMPA of INDAM. The research of A.S. was partially supported by the GNSAGA of INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Mucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Proposition 3

Appendix: Proof of Proposition 3

Assuming \(N=3\), according to the notation from (4), the fifth-order expansions of \(\mathbf{c}\) at s give:

$$\begin{aligned} \displaystyle \mathbf{v}_0(h)= & {} {{\dot{\mathbf{c}}}}+\frac{\mathbf{c}^{(3)}}{6}\,h^2+\mathbf{a}\,h^4+\mathbf{o}(h^4) \\ \displaystyle \mathbf{v}_1(h)= & {} -{{\dot{\mathbf{c}}}}+2\mathbf{c}^{(2)}\,h-\frac{13}{6}\,{\mathbf{c}^{(3)}}\,h^2+\frac{5}{3}\,\mathbf{c}^{(4)}\,h^3-\mathbf{b}\,h^4+\mathbf{o}(h^4) \\ \displaystyle \mathbf{v}_2(h)= & {} {{\dot{\mathbf{c}}}}+2\mathbf{c}^{(2)}\,h+\frac{13}{6}\,{\mathbf{c}^{(3)}}\,h^2+ \frac{5}{3}\,\mathbf{c}^{(4)}\,h^3+\mathbf{b}\,h^4+\mathbf{o}(h^4) \\ \displaystyle \mathbf{v}_3(h)= & {} -{{\dot{\mathbf{c}}}}+4\mathbf{c}^{(2)}\,h-\frac{49}{6}\,{\mathbf{c}^{(3)}}\,h^2+\frac{34}{3}\,\mathbf{c}^{(4)}\,h^3+\mathbf{o}(h^3) \end{aligned}$$

where \(\mathbf{a}\) and \(\mathbf{b}\) depend on \(\mathbf{c}^{(5)}(s)\). We thus get:

$$\begin{aligned} \Vert \mathbf{v}_0(h)\Vert ^2=1-\frac{\Vert \mathbf{c}^{(2)}\Vert ^2}{3}\,h^2+\Bigl ( 2 \mathbf{a}\bullet {{\dot{\mathbf{c}}}}+\frac{1}{36}\,\Vert \mathbf{c}^{(3)}\Vert ^2\Bigr )\,h^4+o(h^4) \end{aligned}$$

and

$$\begin{aligned} \Vert \mathbf{v}_0(h)\Vert ^{-2}=1+\frac{\Vert \mathbf{c}^{(2)}\Vert ^2}{3}\,h^2+\Bigl ( \frac{1}{9}\,\Vert \mathbf{c}^{(2)}\Vert ^4-\frac{1}{36}\,\Vert \mathbf{c}^{(3)}\Vert ^2-2 \mathbf{a}\bullet {{\dot{\mathbf{c}}}}\Bigr )\,h^4+o(h^4) \end{aligned}$$

whence (5) holds. We also have

$$\begin{aligned} \mathbf{v}_1(h)\bullet \mathbf{v}_0(h)=-1+\frac{7}{3}\,\Vert \mathbf{c}^{(2)}\Vert ^2h^2+\frac{1}{3}\,\Bigl ( \mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)} + 5\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}}\Bigr )\,h^3 -a\,h^4 +o(h^4) \end{aligned}$$

where

$$\begin{aligned} a:= \frac{13}{36}\,\Vert \mathbf{c}^{(3)}\Vert ^2+(\mathbf{a}+\mathbf{b})\bullet {{\dot{\mathbf{c}}}} \end{aligned}$$

and hence

$$\begin{aligned} \frac{\mathbf{v}_1(h)\bullet \mathbf{v}_0(h)}{\Vert \mathbf{v}_0(h)\Vert ^2}=-1+2\Vert \mathbf{c}^{(2)}\Vert ^2h^2+\frac{1}{3}\,\Bigl ( \mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)} + 5\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}}\Bigr )\,h^3 -b\,h^4+ o(h^4) \end{aligned}$$

where

$$\begin{aligned} b:= \frac{1}{3}\,\Vert \mathbf{c}^{(3)}\Vert ^2+(\mathbf{b}-\mathbf{a})\bullet {{\dot{\mathbf{c}}}}-\frac{2}{3}\,\Vert \mathbf{c}^{(2)}\Vert ^4 \end{aligned}$$

that gives

$$\begin{aligned} \mathbf{N}_1(h)= & {} \displaystyle 2\mathbf{c}^{(2)}h-2\bigl (\Vert \mathbf{c}^{(2)}\Vert ^2{{\dot{\mathbf{c}}}}+\mathbf{c}^{(3)}\bigr )\,h^2+ \frac{1}{3}\,\Bigl ( 5 \mathbf{c}^{(4)} - 5(\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}})\,{{\dot{\mathbf{c}}}}- (\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}){{\dot{\mathbf{c}}}}\Bigr )\,h^3 \\&\displaystyle +\Bigl ( b\,{{\dot{\mathbf{c}}}} -\frac{1}{3}\,\Vert \mathbf{c}^{(2)}\Vert ^2\mathbf{c}^{(3)}+\mathbf{a}-\mathbf{b}\Bigr )\,h^4+\mathbf{o}(h^4). \end{aligned}$$

As a consequence, we get

$$\begin{aligned} \displaystyle \Vert \mathbf{N}_1(h)\Vert ^2=4\Vert \mathbf{c}^{(2)}\Vert ^2h^2- 8 {\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}}\,h^3+ 4\Bigl (\Vert \mathbf{c}^{(3)}\Vert ^2-\Vert \mathbf{c}^{(2)}\Vert ^4+\frac{5}{3}\, \mathbf{c}^{(4)}\bullet \mathbf{c}^{(2)} \Bigr )\,h^4+ o(h^4) \end{aligned}$$

whence

$$\begin{aligned} \displaystyle \Vert \mathbf{N}_1(h)\Vert ^{-2}= & {} \frac{1}{4\Vert \mathbf{c}^{(2)}\Vert ^2h^2}\Bigl [ 1+ 2\frac{\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}}{\Vert \mathbf{c}^{(2)}\Vert ^2}\,h+ \Bigl ( 4\frac{(\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)})^2}{\Vert \mathbf{c}^{(2)}\Vert ^4}\nonumber \\&-\frac{5}{3}\,\frac{ \mathbf{c}^{(4)}\bullet \mathbf{c}^{(2)} }{\Vert \mathbf{c}^{(2)}\Vert ^2}-\frac{\Vert \mathbf{c}^{(3)}\Vert ^2}{\Vert \mathbf{c}^{(2)}\Vert ^2}+ {\Vert \mathbf{c}^{(2)}\Vert ^2} \Bigr )\,h^2+ o(h^2)\Bigr ] \end{aligned}$$

and definitely (6) holds, where

$$\begin{aligned} \mathbf{d}:= & {} -\frac{1}{6}\,\frac{\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}}{\Vert \mathbf{c}^{(2)}\Vert }\,\mathbf{t}+\varOmega \,\mathbf{n}_1+\Bigl (\frac{5}{6}\,\frac{\mathbf{c}^{(4)}\bullet \mathbf{c}^{(3)\perp }}{\Vert \mathbf{c}^{(2)}\Vert \,\Vert \mathbf{c}^{(3)\perp }\Vert }\nonumber \\&- \frac{\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}}{\Vert \mathbf{c}^{(2)}\Vert ^3}\,\Vert \mathbf{c}^{(3)\perp } \Vert \Bigr )\,\mathbf{n}_2+ \frac{5}{6}\,\frac{\Vert \mathbf{c}^{(4)\perp }\Vert }{\Vert \mathbf{c}^{(2)}\Vert }\,\mathbf{n}_3 \end{aligned}$$
(33)

with the coefficient \(\varOmega \) of \(\mathbf{n}_1\) equal to

$$\begin{aligned} \varOmega := \frac{\bigl (\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}\bigr )^2}{\Vert \mathbf{c}^{(2)}\Vert ^4}\,\Bigl (\frac{3}{2}\,\Vert \mathbf{c}^{(2)}\Vert ^2-1\Bigr )+\frac{1}{2}\,\Vert \mathbf{c}^{(2)}\Vert ^2-\frac{1}{2}\,\frac{\Vert \mathbf{c}^{(3)} \Vert ^2}{\Vert \mathbf{c}^{(2)}\Vert ^2}. \end{aligned}$$
(34)

Moreover, in order to compute \(\mathbf{N}_2(h)\), we check:

$$\begin{aligned} \mathbf{v}_2(h)\bullet \mathbf{v}_0(h)= & {} 1-\frac{7}{3}\,\Vert \mathbf{c}^{(2)}\Vert ^2h^2+\frac{1}{3}\bigl ( \mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}+5\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}}\bigr )+o(h^3) \\ \frac{\mathbf{v}_2(h)\bullet \mathbf{v}_0(h)}{\Vert \mathbf{v}_0(h)\Vert ^2}= & {} 1-2\Vert \mathbf{c}^{(2)}\Vert ^2h^2+\frac{1}{3}\bigl ( \mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}+5\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}}\bigr )+o(h^3) \end{aligned}$$

and hence

$$\begin{aligned}&-\frac{\mathbf{v}_2(h)\bullet \mathbf{v}_0(h)}{\Vert \mathbf{v}_0(h)\Vert ^2}\,\mathbf{v}_0(h)= -{{\dot{\mathbf{c}}}}+\Bigl (2\Vert \mathbf{c}^{(2)}\Vert ^2\,{{\dot{\mathbf{c}}}}-\frac{1}{6}\,\mathbf{c}^{(3)}\Bigr )\,h^2 \nonumber \\&\quad -\frac{1}{3}\,\bigl ( \mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}+5\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}} \bigr )\,{{\dot{\mathbf{c}}}}\,h^3 +\mathbf{o}(h^3). \end{aligned}$$

Furthermore,

$$\begin{aligned} \mathbf{v}_2(h)\bullet \mathbf{N}_1(h)=4\Vert \mathbf{c}^{(2)}\Vert ^2h^2 +\Bigl (\frac{5}{3}\,\mathbf{c}^{(4)}\bullet \mathbf{c}^{(2)} + \Vert \mathbf{c}^{(2)}\Vert ^4 - \Vert \mathbf{c}^{(3)}\Vert ^2 \Bigr )\,h^4+o(h^4) \end{aligned}$$

so that

$$\begin{aligned} \bigl ( \mathbf{v}_2(h)\bullet \mathbf{N}_1(h)\bigr )\,\mathbf{N}_1(h)=4\Vert \mathbf{c}^{(2)}\Vert \,h^2\Bigl \{ 2\mathbf{c}^{(2)}h-2\bigl (\Vert \mathbf{c}^{(2)}\Vert ^2{{\dot{\mathbf{c}}}}+\mathbf{c}^{(3)}\bigr ) \,h^2+\mathbf{A}\,h^3+o(h^3)\Bigr \} \end{aligned}$$

where

$$\begin{aligned} \mathbf{A}:= & {} \frac{1}{3}\,\Bigl ( 5 \mathbf{c}^{(4)} - 5(\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}})\,{{\dot{\mathbf{c}}}}- (\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}){{\dot{\mathbf{c}}}}\Bigr )\\&+2\,\Bigl (\Vert \mathbf{c}^{(2)}\Vert ^2-\frac{\Vert \mathbf{c}^{(3)}\Vert ^2}{\Vert \mathbf{c}^{(2)}\Vert ^2} \Bigr )\,\mathbf{c}^{(2)}+\frac{10}{3}\,\frac{\mathbf{c}^{(4)}\bullet \mathbf{c}^{(2)}}{\Vert \mathbf{c}^{(2)}\Vert ^2}\,\mathbf{c}^{(2)}. \end{aligned}$$

We thus obtain:

$$\begin{aligned} \frac{ \mathbf{v}_2(h)\bullet \mathbf{N}_1(h)}{\Vert \mathbf{N}_1(h)\Vert ^2}\,\mathbf{N}_1(h) = 2\mathbf{c}^{(2)}\,h+\Bigl (4\frac{\mathbf{c}^{(2)}\bullet \mathbf{c}^{(3)}}{\Vert \mathbf{c}^{(2)}\Vert ^2}\,\mathbf{c}^{(2)} -2\bigl (\Vert \mathbf{c}^{(2)}\Vert ^2{{\dot{\mathbf{c}}}}+\mathbf{c}^{(3)}\bigr )\Bigr )\,h^2+\mathbf{B}\,h^3+\mathbf{o}(h^3), \end{aligned}$$

where

$$\begin{aligned} \displaystyle \mathbf{B}:= & {} \frac{1}{3}\,\Bigl ( 5 \mathbf{c}^{(4)} - 5(\mathbf{c}^{(4)}\bullet {{\dot{\mathbf{c}}}})\,{{\dot{\mathbf{c}}}}- 13(\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}){{\dot{\mathbf{c}}}}\Bigr ) \\&\displaystyle +4\,\Bigl (\Vert \mathbf{c}^{(2)}\Vert ^2-\frac{\Vert \mathbf{c}^{(3)}\Vert ^2}{\Vert \mathbf{c}^{(2)}\Vert ^2} +2\,\frac{\bigl (\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}\bigr )^2}{\Vert \mathbf{c}^{(2)}\Vert ^4} \Bigr )\,\mathbf{c}^{(2)} -4\,\frac{\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}}{\Vert \mathbf{c}^{(2)}\Vert ^2}\,\mathbf{c}^{(3)}. \end{aligned}$$

Putting the terms together, we get:

$$\begin{aligned} \mathbf{N}_2(h)=4\mathbf{c}^{(3)\perp } h^2+4\,\mathbf{D}\,h^3+\mathbf{o}(h^3) \end{aligned}$$

where

$$\begin{aligned} \mathbf{D}:=\bigl (\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}\bigr ){{\dot{\mathbf{c}}}} +\Bigl (\frac{\Vert \mathbf{c}^{(3)}\Vert ^2}{\Vert \mathbf{c}^{(2)}\Vert ^2}-\Vert \mathbf{c}^{(2)}\Vert ^2 \Bigr )\,\mathbf{c}^{(2)} +\frac{\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}}{\Vert \mathbf{c}^{(2)}\Vert ^2} \,\mathbf{c}^{(3)} -2\,\frac{\bigl (\mathbf{c}^{(3)}\bullet \mathbf{c}^{(2)}\bigr )^2}{\Vert \mathbf{c}^{(2)}\Vert ^4}\,\mathbf{c}^{(2)} \end{aligned}$$

and definitely (7) holds, where in terms of the orthonormal basis \((\mathbf{t},\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3)\) we obtain formula (8) for \(\mathbf{D}\).

Finally, formula (9) follows by arguing as in the proof of Proposition 2. In fact, the Gram–Schmidt procedure yields that \((\mathbf{t}(h),\mathbf{n}_1(h),\mathbf{n}_2(h),\mathbf{n}_3(h))\) is an orthonormal basis of \({{\mathbb {R}}}^4\), whence \(\mathbf{n}_3(h)=\mathbf{n}_3+\mathbf{o}(1)\).

More precisely, we have \(\mathbf{n}_3(h)=\pm *(\mathbf{t}(h)\wedge \mathbf{n}_1(h)\wedge \mathbf{n}_2(h))\), where \(*\) is the Hodge operator in \({{\mathbb {R}}}^4\), whereas \(*(\mathbf{t}\wedge \mathbf{n}_1\wedge \mathbf{n}_2)=\pm \mathbf{n}_3\), with the same sign ± in the previous two formulas, by our choice in (4). Using that

$$\begin{aligned} \mathbf{t}(h)=\mathbf{t}+\mathbf{o}(h),\quad \mathbf{n}_1(h)=\mathbf{n}_1+\alpha \,\mathbf{n}_2\,h+\mathbf{o}(h), \quad \mathbf{n}_2(h)=\mathbf{n}_2+(\beta \,\mathbf{t}+\gamma \,\mathbf{n}_1)\,h+\mathbf{o}(h) \end{aligned}$$

for some real numbers \(\alpha ,\beta ,\gamma \in {{\mathbb {R}}}\), we get \(\mathbf{t}(h)\wedge \mathbf{n}_1(h)=\mathbf{t}\wedge \mathbf{n}_1+\alpha \,\mathbf{t}\wedge \mathbf{n}_2\,h+\mathbf{o}(1)\wedge \mathbf{o}(1)\,h\) and hence \(\mathbf{t}(h)\wedge \mathbf{n}_1(h)\wedge \mathbf{n}_2(h)=\mathbf{t}\wedge \mathbf{n}_1\wedge \mathbf{n}_2+\mathbf{o}(1)\wedge \mathbf{o}(1)\wedge \mathbf{o}(1)\,h\), whence actually (9) holds true, as required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucci, D., Saracco, A. Weak curvatures of irregular curves in high-dimensional Euclidean spaces. Ann Glob Anal Geom 60, 181–216 (2021). https://doi.org/10.1007/s10455-021-09773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09773-6

Keywords

Mathematics Subject Classification

Navigation