Skip to main content

Advertisement

Log in

An optimization of a non-volatile latch using memristors for sequential circuit applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The next generation of non-volatile memory elements have been attracting significant attention for future emerging memory applications in recent years. Several technologies have been developed to occupy a new field in storage-class memory and even replace NAND flash memories in sequential logic applications, due to their advantageous features such as fast programming time, low power consumption, high endurance and retention. Latch topologies have been proposed to implement these new technologies. In this article, we present new non-volatile Latch topology. We focus on a D Latch topology that uses memristors as memory elements combined with CMOS components. The memristor device has been implemented using an accurate Verilog-A model exploring the experimental data of a real OxRRAM device. Our simulation results explore low-voltage and reliable non-volatile Latch designs. Indeed, we integrate this Latch design to behave as a counter application using both binary and Gray codes. Moreover, this topology has been compared with other non-volatile topologies in terms of power consumption, cell size, energy, programing time and robustness at different programming voltage values. We proved that the memristor-based Latch has non-volatile characteristics and is able to store data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chase, J. (2013). The evolution of the Internet of Things. Texas Instruments.

  2. Vianello, E., et al. (2014). Resistive memories for ultra-low-power embedded computing design. IEDM.

  3. Govoreanu, B., et al. (2011). 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. In: 2011 International Electron Devices Meeting (IEDM). IEEE. https://doi.org/10.1109/IEDM.2011.6131652.

  4. Fackenthal, R., et al. (2014). A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technology. ISSCC.

  5. Zheng, J., Zeng, Z., Zhu, Y. (2017). Memristor-based nonvolatile synchronous flip-flop circuits. In: 2017 seventh international conference on information science and technology (ICIST) (pp. 504–508). IEEE.

  6. Pal, S., Gupta, V., Islam, A. (2018). Variation resilient low-power memristor-based synchronous flip-flops: Design and analysis. Microsystem Technologies 1–14.

  7. Deepa, A., & Prabaharan, S. R. S. (2014). Novel memristor logic gates: A New Paradigm In Electronics. International Journal of Advanced Research and Development, 1(6), 1–16

    Google Scholar 

  8. Biglari, M., Lieske, T., & Fey, D. (2018). High-endurance bipolar ReRAM-based non-volatile flip-flops with run-time tunable resistive states. In 2018 IEEE/ACM international symposium on nanoscale architectures (NANOARCH) (pp. 1–6). IEEE.

  9. Kazi, I., Meinerzhagen, P., Gaillardon, P. E., Sacchetto, D., Burg, A., & De Micheli, G. (2013). A ReRAM-based non-volatile flip-flop with sub-V T read and CMOS voltage-compatible write. In 2013 IEEE 11th international new circuits and systems conference (NEWCAS) (pp. 1–4). IEEE.

  10. Onkaraiah, S., Reyboz, M., Clermidy, F., Portal, J. M., Bocquet, M., Muller, C., Hraziia, Anghel, C., & Amara, A. (2012). Bipolar ReRAM based non-volatile flip-flops for low-power architectures. In 10th IEEE international NEWCAS conference (pp. 417–420). IEEE.

  11. Jung, C. M., Jo, K. H., Lee, E. S., Vo, H. M., & Min, K. S. (2012). Zero-sleep leakage flip-flop circuit with conditional storing memristor retention latch. IEEE Transactions on Nanotechnology, 11, 360–366

    Article  Google Scholar 

  12. Rziga, F. O., Mbarek, K., Ghedira, S., & Besbes, K. (2019). An efficient verilog-a memristor model implementation: simulation and application. Journal of Computational Electronics, 18, 1–10

    Article  Google Scholar 

  13. Mbarek, K., Rziga, F. O., Ghedira, S., & Besbes, K. (2019). On the design and analysis of a compact array with 1T1R RRAM memory element. Analog Integrated Circuits and Signal Processing, 102, 1–11

    Google Scholar 

  14. Mbarek, K., Rziga, F. O., Ghedira, S., & Besbes, K. (2017). An analysis of the dynamics of SPICE memristor model. In 2017 international conference on control, automation and diagnosis (ICCAD), Hammamet, Tunisia (pp. 054–059).

  15. Rziga, F. O., Mbarek, K., Ghedira, S., & Besbes, K. (2017). The basic I-V characteristics of memristor model: Simulation and analysis. Applied Physics A, 123(4), 288

    Article  Google Scholar 

  16. Ghedira, S., Rziga, F. O., Mbarek, K., & Besbes, K. (2019). Coexistence of bipolar and unipolar memristor switching behavior. https://doi.org/10.5772/intechopen.85176.

  17. Wang, Y. F. (2008). Memristor for introductory physics, arXiv: 0808.0286vl [physics.class-ph].

  18. Calayir, V., & Pileggi, L. (2015). Device requirements and technology-driven architecture optimization for analog neurocomputing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(2), 162–172

    Article  Google Scholar 

  19. Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Parnell, T., Tuma, T., Rajendran, B., Leblebici, Y., Sebastian, A., & Eleftheriou, E. (2018). Neuromorphic computing with multi-memristive synapses. Nature Communications, 9(1), 2514

    Article  Google Scholar 

  20. Hu, M., Chen, Y., Yang, J. J., Wang, Y., & Li, H. H. (2017). A compact memristor-based dynamic synapse for spiking neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(8), 1353–1366

    Article  Google Scholar 

  21. Acciarito, S., Cardarilli, G. C., Cristini, A., Di Nunzio, L., Fazzolari, R., Khanal, G. M., Re, M., & Susi, G. (2017). Hardware design of LIF with Latency neuron model with memristive STDP synapses. Integration, the VLSI Journal, 59, 81–89

    Article  Google Scholar 

  22. Texas Intruments. (2003). CMOS dual complementary pair plus inverter: CD4007UB Types. Retrieved April 4, 2019, from https://www.ti.com/lit/ds/symlink/cd4007ub.pdf?HQS=TI-null-null-alldatasheets-df-pf-SEP-wwe.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Ouaja Rziga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rziga, F.O., Mbarek, K., Ghedira, S. et al. An optimization of a non-volatile latch using memristors for sequential circuit applications. Analog Integr Circ Sig Process 110, 55–61 (2022). https://doi.org/10.1007/s10470-021-01863-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01863-6

Keywords

Navigation