Skip to main content

Advertisement

Log in

Vasoactive Intestinal Peptide Promotes Fracture Healing in Sympathectomized Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Vasoactive intestinal peptide (VIP) as a neuromodulator and neurotransmitter played a significant role in modulating bone homeostasis. Our previous study reported an essential role of VIP in in vitro BMSCs osteogenesis and in vivo bone defect repair. VIP was also revealed to have a promoting effect on embryonic skeletal element development. However, the role of VIP in fracture healing is not known yet. We hypothesized that the disorder of sympathetic nervous system impairs bone structure and fracture healing, whereas VIP may rescue the sympathetic inhibition effects and promote fracture healing. We employed a 6-hydroxydopamine (6-OHDA) induced sympathectomy mice model (sympathectomized mice), in which successful sympathetic inhibition was confirmed by a decreased level of norephedrine (NE) in the spleen. In the sympathectomized mice, the femoral micro-architecture, bone density and mechanical properties were all impaired compared to the vehicle control mice. The femoral fracture was created in the vehicle or sympathectomized mice. Vehicle mice were locally injected with PBS as a negative control, and the sympathectomized mice were treated with injection of PBS or VIP. VIP expression at the fracture site was significantly decreased in sympathectomized mice. The fracture healing was repressed upon 6-OHDA treatment and rescued by VIP treatment. Micro-CT examination showed that the femoral bone micro-architecture at the fracture sites and mechanical properties were all impaired. Simultaneously, the expression level of osteogenic markers OCN and OPN were reduced in sympathectomized mice compared with vehicle group. While the VIP treatment rescued the repression effects of 6-OHDA on bone remodeling and significantly promoted bone quality and mechanical properties as well as increased osteogenesis marker expression in the sympathectomized mice. VIP administration promoted bone fracture healing by inhibiting bone resorption, making it a putative new alternative treatment strategy for fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G (2017) Mesenchymal stem cells homing to improve bone healing. J Orthop Translat 9:19–27

    Article  PubMed  PubMed Central  Google Scholar 

  2. Niedermair T, Straub RH, Brochhausen C, Grassel S (2020) Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice. Int J Mol Sci 21:405–422

    Article  CAS  PubMed Central  Google Scholar 

  3. Hukkanen M, Konttinen YT, Rees RG, Santavirta S, Terenghi G, Polak JM (1992) Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscus and bone. Int J Tissue React 14:1–10

    CAS  PubMed  Google Scholar 

  4. Jones KB, Mollano AV, Morcuende JA, Cooper RR, Saltzman CL (2004) Bone and brain: a review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J 24:123–132

    PubMed  PubMed Central  Google Scholar 

  5. Elefteriou F, Campbell P, Ma Y (2014) Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 94:140–151

    Article  CAS  PubMed  Google Scholar 

  6. Grassel SG (2014) The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 16:485–497

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li J, Ahmad T, Spetea M, Ahmed M, Kreicbergs A (2001) Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16:1505–1510

    Article  CAS  PubMed  Google Scholar 

  8. Aitken SJ, Landao-Bassonga E, Ralston SH, Idris AI (2009) β2-Adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch Biochem Biophys 482:96–103

    Article  CAS  PubMed  Google Scholar 

  9. Huang HH, Brennan TC, Muir MM, Mason RS (2009) Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol 220:267–275

    Article  CAS  PubMed  Google Scholar 

  10. Opolka A, Straub RH, Pasoldt A, Grifka J, Grassel S (2012) Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum 64:729–739

    Article  CAS  PubMed  Google Scholar 

  11. Niedzwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55:23–36

    Article  Google Scholar 

  12. Hill EL, Elde R (1991) Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264:469–480

    Article  CAS  PubMed  Google Scholar 

  13. Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232:868–871

    Article  CAS  PubMed  Google Scholar 

  14. Winding B, Wiltink A, Foged NT (1997) Pituitary adenylyl cyclase-activating polypeptides and vasoactive intestinal peptide inhibit bone resorption by isolated rabbit osteoclasts. Exp Physiol 82:871–886

    Article  CAS  PubMed  Google Scholar 

  15. Lundberg P, Lundgren I, Mukohyama H, Lehenkari PP, Horton MA, Lerner UH (2001) Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and differentiation-induced expression of VIP-1 receptors. Endocrinology 142:339–347

    Article  CAS  PubMed  Google Scholar 

  16. Hohmann EL, Levine L, Tashjian AH Jr. (1983) Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3’,5’-monophosphate-dependent mechanism. Endocrinology 112:1233–1239

    Article  CAS  PubMed  Google Scholar 

  17. Lerner UH, Lundberg P, Ransjo M, Persson P, Hakanson R (1994) Helodermin, helospectin, and PACAP stimulate cyclic AMP formation in intact bone, isolated osteoblasts, and osteoblastic cell lines. Calcif Tissue Int 54:284–289

    Article  CAS  PubMed  Google Scholar 

  18. Lundberg P, Lie A, Bjurholm A, Lehenkari PP, Horton MA, Lerner UH, Ransjo M (2000) Vasoactive intestinal peptide regulates osteoclast activity via specific binding sites on both osteoclasts and osteoblasts. Bone 27:803–810

    Article  CAS  PubMed  Google Scholar 

  19. Shi L, Feng L, Zhu ML, Yang ZM, Wu TY, Xu J, Liu Y, Lin WP, Lo JHT, Zhang JF, Li G (2020) Vasoactive intestinal peptide stimulates bone marrow-mesenchymal stem cells osteogenesis differentiation by activating Wnt/beta-catenin signaling pathway and promotes rat skull defect repair. Stem Cells Dev 29:655–666

    Article  CAS  PubMed  Google Scholar 

  20. Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G (2020) Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 83:102077

    Article  CAS  PubMed  Google Scholar 

  21. Niedermair T, Kuhn V, Doranehgard F, Stange R, Wieskotter B, Beckmann J, Salmen P, Springorum HR, Straub RH, Zimmer A, Grifka J, Grassel S (2014) Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification. Matrix Biol 38:22–35

    Article  CAS  PubMed  Google Scholar 

  22. Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S, Wadwa M, Schafer MK, Schedlowski M, del Rey A (2014) The sympathetic nervous system modulates CD4(+)Foxp3(+) regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun 38:100–110

    Article  CAS  PubMed  Google Scholar 

  23. Szpunar MJ, Belcher EK, Dawes RP, Madden KS (2016) Sympathetic innervation, norepinephrine content, and norepinephrine turnover in orthotopic and spontaneous models of breast cancer. Brain Behav Immun 53:223–233

    Article  CAS  PubMed  Google Scholar 

  24. Shi L, Feng L, Liu Y, Duan JQ, Lin WP, Zhang JF, Li G (2018) MicroRNA-218 promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing. Calcif Tissue Int 103:227–236

    Article  CAS  PubMed  Google Scholar 

  25. Haffner-Luntzer M, Kemmler J, Heidler V, Prystaz K, Schinke T, Amling M, Kovtun A, Rapp AE, Ignatius A, Liedert A (2016) Inhibition of midkine augments osteoporotic fracture healing. PLoS ONE 11:e0159278

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun Y, Xu J, Xu L, Zhang J, Chan K, Pan X, Li G (2017) MiR-503 promotes bone formation in distraction osteogenesis through suppressing Smurf1 expression. Sci Rep 7:409–418

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Lin S, Sun Y, Pan X, Xiao L, Zou L, Ho KW, Li G (2016) Translational potential of ginsenoside Rb1 in managing progression of osteoarthritis. J Orthop Translat 6:27–33

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qiao Y, Wang Y, Zhou Y, Jiang F, Huang T, Chen L, Lan J, Yang C, Guo Y, Yan S, Wei Z, Li J (2019) The role of nervous system in adaptive response of bone to mechanical loading. J Cell Physiol 234:7771–7780

    Article  CAS  PubMed  Google Scholar 

  29. Cutz E, Chan W, Track NS, Goth A, Said SI (1978) Release of vasoactive intestinal polypeptide in mast cells by histamine liberators. Nature 275:661–662

    Article  CAS  PubMed  Google Scholar 

  30. Martinez C, Delgado M, Abad C, Gomariz RP, Ganea D, Leceta J (1999) Regulation of VIP production and secretion by murine lymphocytes. J Neuroimmunol 93:126–138

    Article  CAS  PubMed  Google Scholar 

  31. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  CAS  PubMed  Google Scholar 

  32. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    Article  CAS  PubMed  Google Scholar 

  33. Lambert E, Phillips S, Tursunalieva A, Eikelis N, Sari C, Dixon J, Straznicky N, Grima M, Schlaich M, Lambert G (2018) Inverse association between sympathetic nervous system activity and bone mass in middle aged overweight individuals. Bone 111:123–128

    Article  PubMed  Google Scholar 

  34. Cherruau M, Facchinetti P, Baroukh B, Saffar JL (1999) Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone 25:545–551

    Article  CAS  PubMed  Google Scholar 

  35. Pagani F, Sibilia V, Cavani F, Ferretti M, Bertoni L, Palumbo C, Lattuada N, De Luca E, Rubinacci A, Guidobono F (2008) Sympathectomy alters bone architecture in adult growing rats. J Cell Biochem 104:2155–2164

    Article  CAS  PubMed  Google Scholar 

  36. Hu K, Zhou H, Zhang G, Qin R, Hou R, Kong L, Ding Y (2010) The effect of chemical sympathectomy and stress on bone remodeling in adult rats. Neuro Endocrinol Lett 31:807–813

    PubMed  Google Scholar 

  37. Togari A (2002) Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech 58:77–84

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1999) Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology 140:3177–3182

    Article  CAS  PubMed  Google Scholar 

  39. Takeuchi T, Tsuboi T, Arai M, Togari A (2001) Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol 61:579–586

    Article  CAS  PubMed  Google Scholar 

  40. Arai M, Nagasawa T, Koshihara Y, Yamamoto S, Togari A (2003) Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta 1640:137–142

    Article  CAS  PubMed  Google Scholar 

  41. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  CAS  PubMed  Google Scholar 

  42. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132–33140

    Article  CAS  PubMed  Google Scholar 

  43. Roca H, Franceschi RT (2008) Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. Nucleic Acids Res 36:1723–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu XC, Zhang XB, Hu B, Zi Y, Li M (2016) Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides 60:61–66

    Article  CAS  PubMed  Google Scholar 

  45. Amano S, Arai M, Goto S, Togari A (2007) Inhibitory effect of NPY on isoprenaline-induced osteoclastogenesis in mouse bone marrow cells. Biochim Biophys Acta 1770:966–973

    Article  CAS  PubMed  Google Scholar 

  46. Ding WG, Zhang ZM, Zhang YH, Jiang SD, Jiang LS, Dai LY (2010) Changes of substance P during fracture healing in ovariectomized mice. Regul Pept 159:28–34

    Article  CAS  PubMed  Google Scholar 

  47. Appelt J, Baranowsky A, Jahn D, Yorgan T, Kohli P, Otto E, Farahani SK, Graef F, Fuchs M, Herrera A, Amling M, Schinke T, Frosch KH, Duda GN, Tsitsilonis S, Keller J (2020) The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing. EBioMedicine 59:102970

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the National Natural Science Foundation of China (Grant No. 81772322); Hong Kong Government Research Grant Council, General Research Fund (Grant Nos. 14120118, 14160917, C7030-18G and T13-402/17-N); Hong Kong Innovation Technology Commission Funds (Grant No. PRP/050/19FX); Hong Kong Medical Research Funds (Grant Nos. 16170951 and 17180831). This study also received support from the SMART program, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Contributions

GL and LF led and supervised all the experiments. GL, JFZ, and LF designed experiments. LS, YL, ZMY, TYW, JX, JJZ and WPL conducted experiments. LS and LF analyzed data. LS, HTL, LF, and GL prepared, wrote and revised the manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Lu Feng or Gang Li.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Human and Animal Rights and Informed Consent

No human specimen were applied in this study. The animal experiments were performed in accordance with the Code of Ethics of the World Medical Association. The ethics approval (14/118/MIS) of this study was obtained from the Animal Research Ethics Committee (AEEC) of The Chinese University of Hong Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4662 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Liu, Y., Yang, Z. et al. Vasoactive Intestinal Peptide Promotes Fracture Healing in Sympathectomized Mice. Calcif Tissue Int 109, 55–65 (2021). https://doi.org/10.1007/s00223-021-00820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00820-9

Keywords

Navigation