Skip to main content
Log in

R-Toroid as a Three-Dimensional Generalization of a Gaussian Ring and Its Application in Astronomy

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A new analytical model (R-toroid), representing a 3D generalization of the precessing Gaussian ring, is constructed for the study of secular perturbations in celestial mechanics. Our approach is based on triple averaging of the motion of a material point and is reduced to a chain of transformations: 1D Gaussian ring–2D R-ring–3D R-toroid. The figure, structure and gravitational potential of the R-toroid are studied. We obtained the expression for the mutual energy of the R-toroid and the outer Gaussian ring to study the motion of bodies in the gravitational field of the model in two forms (in the integral and in the form of a power-law series). Two equation systems of the secular evolution of osculating orbits (Gaussian rings), in the gravitational field of an R-toroid and in the field of a central precessing star, are derived using the mutual energy. The periods of nodal TΩ and apsidal Tω orbital precession were obtained. Examples of three hot Jupiters with a known period of nodal precession are considered. For the exoplanet Kepler-413b, the R-toroid describes the evolution of any orbit with a ≥ 5.48 AU, and for the exoplanet PTFO 8-8695b, the critical value of the semi-major axis turned out to be only amin ≈ 0.2 AU. The frequency profile of the precession of the test orbit in the field of the star and planet PTFO 8-8695b has been calculated. The minimum value of the period of nodal precession was TΩ ≈ (26.1 ± 3.0) × 103 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. P. Kondratyev, Theory of Potential: New Methods and Problems with Solutions (Mir, Moscow, 2007).

  2. B. P. Kondratyev, Solar Syst. Res. 46, 352 (2012).

    Article  ADS  Google Scholar 

  3. V. A. Antonov, I. I. Nikiforov, and K. V. Kholshevnikov, Elements of the Theory of Gravitational Potential and Some Cases of its Explicit Expression (SPbGU, St. Petersburg, 2008) [in Russian].

  4. M. A. Vashkovyak and S. N. Vashkovyak, Solar Syst. Res. 46, 69 (2012).

    Article  ADS  Google Scholar 

  5. J. R. Touma, S. Tremaine, and M. V. Kazandjian, Mon. Not. R. Astron. Soc. 394, 1085 (2009).

    Article  ADS  Google Scholar 

  6. B. P. Kondratyev and V. S. Kornoukhov, Astron. Rep. 64, 434 (2020).

    Article  ADS  Google Scholar 

  7. B. P. Kondratyev, N. G. Trubitsyna, and E. Sh. Mukhametshina, ASP Conf. Ser. 316, 326 (2004).

  8. B. P. Kondratyev, Mon. Not. R. Astron. Soc. 442, 1755 (2014).

    Article  ADS  Google Scholar 

  9. B. P. Kondratyev and V. S. Kornoukhov, Astron. Rep. 64, 870 (2020).

    Article  ADS  Google Scholar 

  10. Y. Judkovsky, A. Ofir, and O. Aharonson, Astron. J. 160, 195 (2020).

    Article  ADS  Google Scholar 

  11. C. D. Murray and S. F. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, UK, 2000).

    Book  Google Scholar 

  12. J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francou, and J. Laskar, Astron. Astrophys. 282, 663 (1994).

    ADS  Google Scholar 

  13. K. Batygin and M. E. Brown, Astron. J. 151, 22 (2016).

    Article  ADS  Google Scholar 

  14. K. Batygin, F. C. Adams, M. E. Brown, and J. C. Becker, Phys. Rep. 805, 1 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  15. JPL Small-Body Database.

  16. R. A. Wittenmyer, M. Endl, W. D. Cochran, and H. F. Levison, Astron. J. 134, 1276 (2007).

    Article  ADS  Google Scholar 

  17. V. B. Kostov, P. R. McCullough, J. A. Carter, M. Deleuil, et al., Astrophys. J. 784, 14 (2014).

    Article  ADS  Google Scholar 

  18. M. C. Johnson, W. D. Cochran, A. Collier Cameron, and D. M. Bayliss, Astrophys. J. Lett. 810, 23 (2015).

    Article  ADS  Google Scholar 

  19. St. Raetz, T. O. B. Schmidt, S. Czesla, T. Klocová, et al., Mon. Not. R. Astron. Soc. 460, 2834 (2016).

    Article  ADS  Google Scholar 

  20. J. W. Barnes, J. C. van Eyken, B. K. Jackson, D. R. Ciardi, and J. J. J. W. Fortney, Astrophys. J. 774, 53 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Interdisciplinary Scientific and Educational School of Moscow State University “Fundamental and Applied Space Research,” as well as I.A. Strakhov for his help with Figure 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kondratyev.

Additional information

Translated by E. Seifina

APPENDIX

APPENDIX

EXPANSION OF THE EXTERNAL POTENTIAL OF AN R-TOROID IN A SERIES

To derive formula (24), it is advisable to introduce the function

$$F(R,z,x,a,g) = \frac{{K(\bar {k})}}{{\sqrt {{{R}^{2}} + {{z}^{2}} + {{{(x + a)}}^{2}} + 2(x + a)[R\sqrt {1 - {{g}^{2}}(u)} - zg(u)]} }},$$
(A.1)

which we expand in a series in the variables x and u. As a result, we get the series

$$\begin{gathered} F(R,z,x,a,g) \\ = {{\sum\limits_{n,m = 0}^\infty {\left. {\frac{{{{x}^{n}}}}{{n{\kern 1pt} !}}\frac{{{{g}^{m}}}}{{m{\kern 1pt} !}}\frac{{{{\partial }^{{n + m}}}F(R,z,x,a,g)}}{{\partial {{x}^{n}}\partial {{g}^{m}}}}} \right|} }_{{\begin{subarray}{l} x = 0 \\ g = 0 \end{subarray}} }}, \\ \end{gathered} $$
(A.2)

which can be rewritten, taking into account the form of the function (A1), in the form

$$F(R,z,x,a,g) = {{\sum\limits_{n,m = 0}^\infty {\left. {\frac{{{{x}^{n}}}}{{n{\kern 1pt} !}}\frac{{{{g}^{m}}}}{{m{\kern 1pt} !}}\frac{{{{\partial }^{{n + m}}}\bar {F}(R,z,a,g)}}{{\partial {{a}^{n}}\partial {{g}^{m}}}}} \right|} }_{{g = 0}}},$$
(A.3)

where \(\bar {F}(R,z,a,g) = F(R,z,x = 0,a,g).\) After substituting the series (A3) in (22), considering (A1) and rearranging the places of summation and integration, the double integral is divided into the sum of the products of two single integrals

$$\begin{gathered} {{\Phi }_{{{\text{out}}}}}(r,\varphi ,\theta ) = \frac{{2GM}}{{{{\pi }^{3}}a}}\sum\limits_{n,m = 0}^\infty {\left[ {\frac{1}{{n{\kern 1pt} !}}\int\limits_{ - ae}^{ae} {\frac{{(x + a){{x}^{n}}dx}}{{\sqrt {{{a}^{2}}{{e}^{2}} - {{x}^{2}}} }}} \mathop {}\limits_{\mathop {}\limits_{_{{}}}^{} }^{} } \right.} \\ \left. {{{{\left. { \times \;\frac{{{{{\sin }}^{m}}i}}{{m{\kern 1pt} !}}\int\limits_{ - \pi /2}^{\pi /2} {{{{\sin }}^{m}}} udu\frac{{{{\partial }^{{n + m}}}\bar {F}(R,z,a,g)}}{{\partial {{a}^{n}}\partial {{g}^{m}}}}} \right|}}_{{g = 0}}}} \right]. \\ \end{gathered} $$
(A.4)

From here, introducing coefficients (25), as a result, we obtain formula (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, B.P., Kornoukhov, V.S. R-Toroid as a Three-Dimensional Generalization of a Gaussian Ring and Its Application in Astronomy. Astron. Rep. 65, 412–426 (2021). https://doi.org/10.1134/S1063772921050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921050048

Navigation