Skip to main content
Log in

Three-Dimensional Model of the Flow Structure in the Asynchronous Polar CD Ind during Magnetic Pole Switching

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We performed a three-dimensional numerical MHD simulation of the flow structure in the asynchronous polar CD Ind during the switching phases between the magnetic poles of the accretor—a white dwarf. To account for fast processes, a numerical non-stationary model has been developed. The calculations were performed under the assumption that the magnetic field of the accretor has a shifted dipole configuration. Based on the results of calculations, maps of hot spots on the surface of the accretor and light curves during the magnetic pole switching phases were constructed. We showed that in the adopted configuration of the magnetic field, when the field parameters at the south and north poles are different, the flow structure changes in different ways, depending on which pole the switching takes place. As a consequence, significant differences are also observed in the nature of the change in the light curves at different switching times. This circumstance allows us to hope that a comparison of the observed and synthetic light curves can provide information on the actual configuration of the magnetic field in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. http://ckp.nrcki.ru/

REFERENCES

  1. S. Vennes, D. T. Wickramasinghe, J. R. Thorstensen, D. J. Christian, and M. J. Bessell, Astron. J. 112, 2254 (1996).

    Article  ADS  Google Scholar 

  2. A. Schwope, D. H. Buckley, D. O’Donoghue, G. Hasinger, J. Trümper, and W. Voges, Astron. Astrophys. 326, 195 (1997).

    ADS  Google Scholar 

  3. G. Ramsay, D. H. Buckley, M. Cropper, and M. K. Harrop-Allin, Mon. Not. R. Astron. Soc. 303, 96 (1999).

    Article  ADS  Google Scholar 

  4. G. Ramsay, D. H. Buckley, M. Cropper, M. K. Harrop-Allin, and S. Potter, Mon. Not. R. Astron. Soc. 316, 225 (2000).

    Article  ADS  Google Scholar 

  5. G. Myers, J. Patterson, E. de Miguel, F.-J. Hambsch, et al., Publ. Astron. Soc. Pacif. 129, 4204 (2017).

    Article  Google Scholar 

  6. A. R. King, Mon. Not. R. Astron. Soc. 261, 144 (1993).

    Article  ADS  Google Scholar 

  7. G. A. Wynn and A. R. King, Mon. Not. R. Astron. Soc. 275, 9 (1995).

    Article  ADS  Google Scholar 

  8. G. A. Wynn, A. R. King, and K. Horne, Mon. Not. R. Astron. Soc. 286, 436 (1997).

    Article  ADS  Google Scholar 

  9. A. R. King and G. A. Wynn, Mon. Not. R. Astron. Soc. 310, 203 (1999).

    Article  ADS  Google Scholar 

  10. A. J. Norton, J. A. Wynn, and R. V. Somerscales, Astrophys. J. 614, 349 (2004).

    Article  ADS  Google Scholar 

  11. N. R. Ikhsanov, V. V. Neustroev, and N. G. Beskrovnaya, Astron. Astrophys. 421, 1131 (2004).

    Article  ADS  Google Scholar 

  12. A. J. Norton, O. W. Butters, T. L. Parker, and G. A. Wynn, Astrophys. J. 672, 524 (2008).

    Article  ADS  Google Scholar 

  13. P. Hakala, G. Ramsay, S. B. Potter, A. Beardmore, D. H. Buckley, and G. Wynn, Mon. Not. R. Astron. Soc. 486, 2549 (2019).

    Article  ADS  Google Scholar 

  14. A. V. Sobolev, A. G. Zhilkin, D. V. Bisikalo, and D. A. H. Buckley, Astron. Rep. 64, 467 (2020).

    Article  ADS  Google Scholar 

  15. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  16. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  17. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 1063 (2010).

    Article  ADS  Google Scholar 

  18. A. G. Zhilkin, D. V. Bisikalo, and P. A. Mason, Astron. Rep. 56, 257 (2012).

    Article  ADS  Google Scholar 

  19. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 53, 436 (2009).

    Article  ADS  Google Scholar 

  20. A. G. Zhilkin and D. V. Bisikalo, Adv. Space Res. 45, 437 (2010).

    Article  ADS  Google Scholar 

  21. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 840 (2010).

    Article  ADS  Google Scholar 

  22. D. V. Bisikalo, A. G. Zhilkin, P. V. Kaygorodov, V. A. Ustyugov, and M. M. Montgomeri, Astron. Rep. 57, 327 (2013).

    Article  ADS  Google Scholar 

  23. V. A. Ustyugov, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 57, 811 (2013).

    Article  ADS  Google Scholar 

  24. A. M. Fateeva, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 60, 87 (2015).

    Article  ADS  Google Scholar 

  25. P. B. Isakova, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 59, 843 (2015).

    Article  ADS  Google Scholar 

  26. P. B. Isakova, N. R. Ikhsanov, A. G. Zhilkin, D. V. Bisikalo, and N. G. Beskrovnaya, Astron. Rep. 60, 498 (2016).

    Article  ADS  Google Scholar 

  27. P. B. Isakova, A. G. Zhilkin, D. V. Bisikalo, A. N. Semena, and M. G. Revnivtsev, Astron. Rep. 61, 560 (2017).

    Article  ADS  Google Scholar 

  28. E. P. Kurbatov, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 63, 25 (2019).

    Article  ADS  Google Scholar 

  29. A. G. Zhilkin, A. V. Sobolev, D. V. Bisikalo, and M. M. Gabdeev, Astron. Rep. 63, 751 (2019).

    Article  ADS  Google Scholar 

  30. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 610, 920 (2004).

    Article  ADS  Google Scholar 

  31. G. R. Ricker, J. N. Winn, R. Vanderspek, D. W. Latham, et al., J. Astron. Tel. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project 19-52-60001). The study was carried out using the equipment of the Center for Collective Use “Complex for Modeling and Data Processing of Mega-Class Research Facilities” of the National Research Center Kurchatov Institute.Footnote 1 This work was performed using the computing cluster of the Joint Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sobolev.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, A.V., Zhilkin, A.G., Bisikalo, D.V. et al. Three-Dimensional Model of the Flow Structure in the Asynchronous Polar CD Ind during Magnetic Pole Switching. Astron. Rep. 65, 392–411 (2021). https://doi.org/10.1134/S106377292106007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292106007X

Navigation