Skip to main content
Log in

Single-Capacitor Electrostatic Vibration Energy Converter Based on the Bennet Doubler

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

In this paper, the results of the theoretical and experimental studies of a single-capacitor mechanical-to-electrical energy converter based on the Bennet doubler with a power source in a variable capacitor branch are presented. The analytical expressions obtained for calculating its basic characteristics make it possible to considerably simplify the search for parameters of the converter elements at the preliminary design stage. It is shown that the results of the theoretical calculations are in good agreement with the experimental data, which allows using them for the optimal selection of the converter elements in the development of electromechanical microgenerators, active vibration and acceleration sensors, and threshold devices detecting the excess of the permissible critical value of the structure’s vibration amplitude. The advantage of the investigated structure, in comparison with the basic design of the Bennet doubler, lies in its versatility and the converter’s capability to work under the action of a mechanical force leading the capacitance modulation depth of the capacitor to be less than 2. As a result, it is possible to extend the range of amplitudes of the external mechanical vibrations and the scope of the variable capacitors used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Khan, F. and Qadir, M., State-of-the-art in vibration-based electrostatic energy harvesting, J. Micromech. Microeng., 2016, vol. 26, p. 103001. https://doi.org/10.1088/0960-1317/26/10/103001

    Article  Google Scholar 

  2. Pozo, B., Garate, J.I., Araujo, J.A., and Susana, F., Energy harvesting technologies and equivalent electronic structural models—review, Electronics, 2019, vol. 8, no. 486, p. 31. https://doi.org/10.3390/electronics8050486

    Article  Google Scholar 

  3. Wei, J., Lefeuvre, E., Mathias, H., and Costa, F., Interface circuit for vibration energy harvesting with adjustable bias voltage, J. Phys.: Conf. Ser., 2015, vol. 660, p. 012016. https://doi.org/10.1088/1742-6596/660/1/012016

    Article  Google Scholar 

  4. Dragunov, V.P., Micromechanical electrostatic converter, Dokl. Akad. Nauk Vyssh. Shk. RF, 2007, no. 1 (8), pp. 56–66.

  5. Lefeuvre, E., Risquez, S., Wei, J., Woytasik, M., and Parrain, F., Self-biased inductor-less interface circuit for electret-free electrostatic energy harvesters, J. Phys.: Conf. Ser., 2014, vol. 557, p. 012052. https://doi.org/10.1088/1742-6596/557/1/012052

    Article  Google Scholar 

  6. Dragunov, V.P. and Ostertak, D.I., Architecture and analysis of circuits of microelectromechanical electrical energy recuperators, Nano- Mikrosist. Tekh., 2011, no. 4 (129), pp. 49–54.

  7. De Queiroz, A.C.M., Electrostatic vibrational energy harvesting using a variation of Bennet’s doubler, in Proceedings of the IEEE International Midwest Symposium on Circuits Systems, 2010, pp. 404–407.

  8. Dorzhiev, V., Karami, A., Basset, P., Marty, F., Dragunov, V., and Galayko, D., Electret-free micromachined silicon electrostatic vibration energy harvester with the Bennet’s doubler as conditioning circuit, IEEE Electron Dev. Lett., 2015, vol. 36, no. 2, pp. 183–185. https://doi.org/10.1109/LED.2014.2387213

    Article  Google Scholar 

  9. Dorzhiev, V., Karami, A., Basset, P., Dragunov, V., and Galayko, D., MEMS electrostatic vibration energy harvester without switches and inductive elements, J. Phys.: Conf. Ser., 2014, vol. 557, no. 1, p. 012126. https://doi.org/10.1088/1742-6596/557/1/012126

    Article  Google Scholar 

  10. De Queiroz, A.C.M., Electrostatic energy harvesting using capacitive generators without control circuits, Analog Integr. Circ. Sign. Process., 2015, no. 85, pp. 57–64. https://doi.org/10.1007/s10470-015-0577-0

  11. De Queiroz, A.C.M. and de Menezes, N.A.T., Energy harvesting with pairs of variable capacitors without control circuits, Analog Integr. Circ. Sign. Process., 2018, no. 97, pp. 533–544. https://doi.org/10.1007/s10470-018-1253-y

  12. Dragunov, V.P. and Dorzhiev, V.Yu., Microelectromechanical generator based on Bennet’s doubler, Nano- Mikrosist. Tekh., 2012, no. 11 (148), pp. 39–42.

  13. De Queiroz, A.C.M., Biased capacitive divider electrostatic generators for energy harvesting, in Proceedings of the 2017 IEEE 8th Latin American Symposium on Circuits and Systems (LASCAS), 2017, pp. 1–4. https://doi.org/10.1109/LASCAS.2017.7948045

  14. Dragunov, V.P., Ostertak, D.I., and Sinitskiy, R.E., New modifications of a Bennet doubler circuit-based electrostatic vibrational energy harvester, Sens. Actuators, A, 2020, vol. 302, p. 111812. https://doi.org/10.1016/j.sna.2019.111812

    Article  Google Scholar 

  15. Karami, A., Basset, P., and Galayko, D., Electrostatic vibration energy harvester using an electret-charged MEMS transducer with an unstable auto-synchronous conditioning circuit, J. Phys.: Conf. Ser., 2015, vol. 660, no. 1, p. 012025. https://doi.org/10.1088/1742-6596/660/1/012025

    Article  Google Scholar 

  16. Dragunov, V.P., Dorzhiev, V.Y., Ostertak, D.I., and Atuchin, V.V., A new autostabilization mechanism in the Bennet doubler circuit-based electrostatic vibrational energy harvester, Sens. Actuators, A, 2018, vol. 272, pp. 259–266. https://doi.org/10.1016/j.sna.2018.01.053

    Article  Google Scholar 

  17. Lagomarsini, C., Jean-Mistral, C., Monfray, S., and Sylvestre, A., Optimization of an electret-based soft hybrid generator for human body applications, Smart Mater. Struct., 2019, vol. 28. https://doi.org/10.1088/1361-665X/ab3906

  18. Kuehne, I., Frey, A., Marinkovic, D., Eckstein, G., and Seidel, H., Power MEMS-A capacitive vibration-to-electrical energy converter with built-in voltage, Sens. Actuators, A, 2008, vol. 142, pp. 263–269.

    Article  Google Scholar 

  19. Varpula, A., Laakso, S.J., Havia, T., Kyynäräinen, J., and Prunnila, M., Contacting mode operation of work function energy harvester, J. Phys.: Conf. Ser., 2014, vol. 557, p. 012010. https://doi.org/10.1088/1742-6596/557/1/012010

    Article  Google Scholar 

  20. Dragunov, V.P. and Lyutaeva, M.N., Parameters estimation of the MEM transducer with electrodes produced from different materials, in Proceedings of the 2009 International School and Seminar INTERNANO, 2009, pp. 93–96.

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FSUN-2020-0004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Dragunov or R. E. Sinitskiy.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragunov, V.P., Sinitskiy, R.E. & Dragunova, E.V. Single-Capacitor Electrostatic Vibration Energy Converter Based on the Bennet Doubler. Russ Microelectron 50, 178–188 (2021). https://doi.org/10.1134/S1063739721020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739721020049

Navigation