Skip to main content
Log in

Microscale Surface Patterning of Zirconia by Femtosecond Pulsed Laser Irradiation

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Irradiation of yttria-stabilized zirconia (YSZ) was performed by a femtosecond pulsed laser to investigate the feasibility of V-shaped groove microstructure fabrication. Firstly, fundamental characteristics of microgroove fabrication was investigated by varying scanning speed of laser and number of scans. Higher scanning speed resulted in a smooth surface without any debris adhesion. By increasing number of scans, the cross-sectional profile of the microgroove became a well-defined V shape, and the taper angle of the V-shaped groove can be precisely controlled by laser scanning speed. Moreover, the laser-induced phase transformation of YSZ was characterized, and it was found that the monoclinic ratio after irradiation decreased in comparison with original YSZ surface, indicating improved strength and toughness. TEM cross-sectional observation of the microgrooves was performed and tetragonal phase was detected independent of locations. Finally, micro pyramid structures were created on the YSZ surface by perpendicularly crossing the laser scan directions. The resulting surface showed a drastic change in surface wettability. These findings demonstrated the possibility of generating precise complex microstructures on YSZ surface with high functionality and low subsurface damage, presenting great potential of wide applications in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Garvie, R. C., Hannink, R. H., & Pascoe, R. T. (1975). Ceramic steel? Nature, 258(5537), 703–704. https://doi.org/10.1038/258703a0

    Article  Google Scholar 

  2. Scott, H. G. (1975). Phase relationships in the zirconia–yttria system. Journal of Materials Science, 10(9), 1527–1535. https://doi.org/10.1007/BF01031853

    Article  Google Scholar 

  3. Gupta, T. K., Lange, F. F., & Bechtold, J. H. (1978). Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase. Journal of Materials Science, 13(7), 1464–1470. https://doi.org/10.1007/BF00553200

    Article  Google Scholar 

  4. Piconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials, 20(1), 1–25. https://doi.org/10.1016/S0142-9612(98)00010-6

    Article  Google Scholar 

  5. Sailer, I., Philipp, A., Zembic, A., Pjetursson, B. E., Hämmerle, C. H. F., & Zwahlen, M. (2009). A systematic review of the performance of ceramic and metal implant abutments supporting fixed implant reconstructions. Clinical Oral Implants Research, 20(SUPPL. 4), 4–31. https://doi.org/10.1111/j.1600-0501.2009.01787.x

    Article  Google Scholar 

  6. Cho, G. Y., Yu, W., Lee, Y. H., Lee, Y., Tanveer, W. H., Kim, Y., Lee, S., Cha, S. W. (2020). Effects of nanoscale PEALD YSZ interlayer for AAO based thin film solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing Green Technology, 7(2), 423–430. https://doi.org/10.1007/s40684-019-00082-9

    Article  Google Scholar 

  7. Stanciuc, A. M., Flamant, Q., Sprecher, C. M., Alini, M., Anglada, M., & Peroglio, M. (2018). Femtosecond laser multi-patterning of zirconia for screening of cell-surface interactions. Journal of the European Ceramic Society, 38(3), 939–948. https://doi.org/10.1016/j.jeurceramsoc.2017.08.019

    Article  Google Scholar 

  8. Carvalho, A., Cangueiro, L., Oliveira, V., Vilar, R., Fernandes, M. H., & Monteiro, F. J. (2018). Femtosecond laser microstructured alumina toughened zirconia: A new strategy to improve osteogenic differentiation of hMSCs. Applied Surface Science, 435, 1237–1245. https://doi.org/10.1016/j.apsusc.2017.11.206

    Article  Google Scholar 

  9. Carvalho, A., Grenho, L., Fernandes, M. H., Daskalova, A., Trifonov, A., Buchvarov, I., & Monteiro, F. J. (2020). Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceramics International, 46(2), 1383–1389. https://doi.org/10.1016/j.ceramint.2019.09.101

    Article  Google Scholar 

  10. Ji, M., Xu, J., Chen, M., & El Mansori, M. (2020). Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing. Ceramics International, 46(6), 7161–7169. https://doi.org/10.1016/j.ceramint.2019.11.210

    Article  Google Scholar 

  11. Chen, F., Zhang, D., Yang, Q., Yong, J., Du, G., Si, J., Yun, F., Hou, X. (2013). Bioinspired wetting surface via laser microfabrication. ACS Applied Materials and Interfaces, 5(15), 6777–6792. https://doi.org/10.1021/am401677z

    Article  Google Scholar 

  12. Yao, L., & He, J. (2014). Recent progress in antireflection and self-cleaning technology—From surface engineering to functional surfaces. Progress in Materials Science, 61, 94–143. https://doi.org/10.1016/j.pmatsci.2013.12.003

    Article  Google Scholar 

  13. Yan, J., & Okuuchi, T. (2019). Chip morphology and surface integrity in ultraprecision cutting of yttria-stabilized tetragonal zirconia polycrystal. CIRP Annals, 68(1), 53–56. https://doi.org/10.1016/j.cirp.2019.04.050

    Article  Google Scholar 

  14. Holthaus, M. G., Twardy, S., Stolle, J., Riemer, O., Treccani, L., Brinksmeier, E., & Rezwan, K. (2012). Micromachining of ceramic surfaces: Hydroxyapatite and zirconia. Journal of Materials Processing Technology, 212(3), 614–624. https://doi.org/10.1016/j.jmatprotec.2011.06.007

    Article  Google Scholar 

  15. Lu, A., Gao, Y., Jin, T., Luo, X., Zeng, Q., & Shang, Z. (2020). Effects of surface roughness and texture on the bacterial adhesion on the bearing surface of bio-ceramic joint implants: An in vitro study. Ceramics International, 46(5), 6550–6559. https://doi.org/10.1016/j.ceramint.2019.11.139

    Article  Google Scholar 

  16. Smielak, B., & Klimek, L. (2015). Effect of hydrofluoric acid concentration and etching duration on select surface roughness parameters for zirconia. Journal of Prosthetic Dentistry, 113(6), 596–602. https://doi.org/10.1016/j.prosdent.2015.01.001

    Article  Google Scholar 

  17. Takayama, N., Asaka, S., & Yan, J. (2018). Nanosecond pulsed laser irradiation of sapphire for developing microstructures with deep V-shaped grooves. Precision Engineering, 52(February), 440–450. https://doi.org/10.1016/j.precisioneng.2018.02.008

    Article  Google Scholar 

  18. Aguilar-Morales, A. I., Alamri, S., & Lasagni, A. F. (2018). Micro-fabrication of high aspect ratio periodic structures on stainless steel by picosecond direct laser interference patterning. Journal of Materials Processing Technology, 252, 313–321. https://doi.org/10.1016/j.jmatprotec.2017.09.039

    Article  Google Scholar 

  19. Fiedler, S., Irsig, R., Tiggesbäumker, J., Schuster, C., Merschjann, C., Rothe, N., Lochbrunner, S., Vehse, M., Seitz, H., Klinkenberg, E.-D., Meiwes-Broer, K.-H. (2013). Machining of biocompatible ceramics with femtosecond laser pulses. Biomedical Engineering Biomedizinische Technik, 58, 3–4. https://doi.org/10.1515/bmt-2013-4093

    Article  Google Scholar 

  20. Kim, M., Lee, S. M., Lee, S. J., Kim, Y. W., Liang-Li, & Lee, D. W. (2017). Effect on friction reduction of micro/nano hierarchical patterns on sapphire wafers. International Journal of Precision Engineering and Manufacturing Green Technology, 4(1), 27–35. https://doi.org/10.1007/s40684-017-0004-3

    Article  Google Scholar 

  21. Wang, X. C., Wu, L. Y. L., Shao, Q., & Zheng, H. Y. (2009). Laser micro structuring on a Si substrate for improving surface hydrophobicity. Journal of Micromechanics and Microengineering, 19(8), 085025. https://doi.org/10.1088/0960-1317/19/8/085025

    Article  Google Scholar 

  22. Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. Journal of the American Ceramic Society, 92(9), 1901–1920. https://doi.org/10.1111/j.1551-2916.2009.03278.x

    Article  Google Scholar 

  23. Grigore, A., Spallek, S., Petschelt, A., Butz, B., Spiecker, E., & Lohbauer, U. (2013). Microstructure of veneered zirconia after surface treatments: A TEM study. Dental Materials, 29(11), 1098–1107. https://doi.org/10.1016/j.dental.2013.07.022

    Article  Google Scholar 

  24. Feng, D., & Shen, H. (2019). Hole quality control in underwater drilling of yttria-stabilized zirconia using a picosecond laser. Optics and Laser Technology, 113, 141–149. https://doi.org/10.1016/j.optlastec.2018.12.019

    Article  Google Scholar 

  25. Li, J., Ji, L., Hu, Y., & Bao, Y. (2016). Precise micromachining of yttria-tetragonal zirconia polycrystal ceramic using 532 nm nanosecond laser. Ceramics International, 42(3), 4377–4385. https://doi.org/10.1016/j.ceramint.2015.11.118

    Article  Google Scholar 

  26. Roitero, E., Anglada, M., Mücklich, F., & Jiménez-Piqué, E. (2018). Mechanical reliability of dental grade zirconia after laser patterning. Journal of the Mechanical Behavior of Biomedical Materials, 86(June), 257–263. https://doi.org/10.1016/j.jmbbm.2018.06.039

    Article  Google Scholar 

  27. Cai, Y., Chang, W., Luo, X., & Qin, Y. (2019). Superhydrophobicity of microstructured surfaces on zirconia by nanosecond pulsed laser. Journal of Micromanufacturing, 2(1), 5–14. https://doi.org/10.1177/2516598418799933

    Article  Google Scholar 

  28. Roitero, E., Lasserre, F., Roa, J. J., Anglada, M., Mücklich, F., & Jiménez-Piqué, E. (2017). Nanosecond-laser patterning of 3Y-TZP: Damage and microstructural changes. Journal of the European Ceramic Society, 37(15), 4876–4887. https://doi.org/10.1016/j.jeurceramsoc.2017.05.052

    Article  Google Scholar 

  29. Delgado-Ruíz, R. A., Calvo-Guirado, J. L., Moreno, P., Guardia, J., Gomez-Moreno, G., Mate-Sánchez, J. E., Ramirez-Fernández, P., Chiva, F. (2011). Femtosecond laser microstructuring of zirconia dental implants. Journal of Biomedical Materials Research Part B Applied Biomaterials, 96 B(1), 91–100. https://doi.org/10.1002/jbm.b.31743

    Article  Google Scholar 

  30. Ackerl, N., & Wegener, K. (2019). Ablation characteristics of alumina and zirconia ceramics on ultra-short pulsed laser machining. Journal of Laser Micro Nanoengineering, 14(2), 168–172. https://doi.org/10.2961/jlmn.2019.02.0009

    Article  Google Scholar 

  31. Bonse, J., Hohm, S., Kirner, S. V., Rosenfeld, A., & Kruger, J. (2017). Laser-induced periodic surface structures—A scientific evergreen. IEEE Journal of Selected Topics in Quantum Electronics, 23(3), 109–123. https://doi.org/10.1109/JSTQE.2016.2614183

    Article  Google Scholar 

  32. Jing, X., Pu, Z., Zheng, S., Wang, F., & Qi, H. (2020). Nanosecond laser induced microstructure features and effects thereof on the wettability in zirconia. Ceramics International, 46(15), 24173–24182. https://doi.org/10.1016/j.ceramint.2020.06.197

    Article  Google Scholar 

  33. Milewski, J., & Sklar, E. (1996). Modelling and validation of multiple reflections for enhanced laser welding. Modelling and Simulation in Materials Science and Engineering, 4(3), 305–322. https://doi.org/10.1088/0965-0393/4/3/005

    Article  Google Scholar 

  34. Samant, A. N., & Dahotre, N. B. (2009). Laser machining of structural ceramics—A review. Journal of the European Ceramic Society, 29(6), 969–993. https://doi.org/10.1016/j.jeurceramsoc.2008.11.010

    Article  Google Scholar 

  35. Muñoz Tabares, J. A., & Anglada, M. J. (2010). Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy. Journal of the American Ceramic Society, 93(6), 1790–1795. https://doi.org/10.1111/j.1551-2916.2010.03635.x

    Article  Google Scholar 

  36. Kosmač, T., Oblak, Č, & Marion, L. (2008). The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. Journal of the European Ceramic Society, 28(5), 1085–1090. https://doi.org/10.1016/j.jeurceramsoc.2007.09.013

    Article  Google Scholar 

  37. Roitero, E., Ochoa, M., Anglada, M., Mücklich, F., & Jiménez-Piqué, E. (2018). Low temperature degradation of laser patterned 3Y-TZP: Enhancement of resistance after thermal treatment. Journal of the European Ceramic Society, 38(4), 1742–1749. https://doi.org/10.1016/j.jeurceramsoc.2017.10.044

    Article  Google Scholar 

  38. Yamamuro, Y., Shimoyama, T., Yamashita, I., & Yan, J. (2020). Multiscale surface patterning of zirconia by picosecond pulsed laser irradiation. Journal of Micro and Nano-Manufacturing, 8(1), 8–13. https://doi.org/10.1115/1.4046040

    Article  Google Scholar 

  39. Raghavan, S., Wang, H., Dinwiddie, R. B., Porter, W. D., & Mayo, M. J. (1998). The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scripta Materialia, 39(8), 1119–1125. https://doi.org/10.1016/S1359-6462(98)00290-5

    Article  Google Scholar 

  40. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28(8), 988–994. https://doi.org/10.1021/ie50320a024

    Article  Google Scholar 

  41. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551. https://doi.org/10.1039/tf9444000546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwang Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamuro, Y., Shimoyama, T. & Yan, J. Microscale Surface Patterning of Zirconia by Femtosecond Pulsed Laser Irradiation. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 619–632 (2022). https://doi.org/10.1007/s40684-021-00362-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00362-3

Keywords

Navigation