Skip to main content
Log in

Transparent and Flexible Photon Sieve Made with Cellulose Nanofiber by Micro-Nano Structure Molding

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Conventionally, the photon sieve (PS) was made of chrome-coated fused silica and quartz plates. However, fused silica and quartz plates have a size limitation due to their weight and fragility. A membrane PS is attractive since it is lightweight, large size, flexibility and deployable. This paper demonstrates the new concept of membrane PS based on cellulose nanofiber (CNF). The CNF-based PS (CNF-PS) is transparent, flexible, lightweight, and has high strength and toughness. This study highlights the PS fabrication on a CNF film using a micro-nano structure molding technique and its structural stability in an external environmental change. For the first time in literature, through a high vacuum (5 × 10–8 Torr) environment test, it was shown that CNF has emerged as a promising optical material. Furthermore, the prepared CNF-PS exhibited high beam quality. This study explained the complete research strategy from the isolation of cellulose nanofibers to its PS application. The new concept of CNF-PS will accelerate its broad application to thin and compact photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kipp, L., Skibowski, M., Johnson, R. L., Berndt, R., Adelung, R., Harm, S., & Seemann, R. (2001). Sharper images by focusing soft X-rays with photon sieves. Nature, 414, 184–188

    Article  Google Scholar 

  2. Menon, R., Gil, D., Barbastathis, G., & Smith, H. I. (2005). Photon-sieve lithography. Journal of Optical Society of America A, 22, 342–345

    Article  Google Scholar 

  3. Andersen, G. (2005). Large optical photon sieve. Optics Letters, 30, 2976–2978

    Article  Google Scholar 

  4. Rogers, E. T., Lindberg, J., Roy, T., Savo, S., Chad, J. E., Dennis, M. R., & Zheludev, N. I. (2012). A super-oscillatory lens optical microscope for subwavelength imaging. Nature Materials, 11, 432–435

    Article  Google Scholar 

  5. Fang, W., Lei, J., Zhang, P., Qin, F., Jiang, M., Zhu, X., Hu, D., Cao, Y., & Li, X. (2020). Multilevel phase supercritical lens fabricated by synergistic optical lithography. Nanophotonics, 9, 1469–1477

    Article  Google Scholar 

  6. Rogers, E. T., & Zheludev, N. I. (2013). Optical super-oscillations: Sub-wavelength light focusing and super-resolution imaging. Journal of Optics, 15, 094008

    Article  Google Scholar 

  7. Yuan, G., Rogers, E. T., Roy, T., Adamo, G., Shen, Z., & Zheludev, N. I. (2014). Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Scientific Reports, 4, 6333

    Article  Google Scholar 

  8. Hou, C. L. (2011). Novel diffractive optical element: Binary photon sieve. Optical Engineering, 50, 068001

    Article  Google Scholar 

  9. Sun, W., Hu, Y., MacDonnell, D. G., Weimer, C., & Baize, R. R. (2016). Technique to separate lidar signal and sunlight. Optics Express, 24, 12949–12954

    Article  Google Scholar 

  10. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., & Woerdman, J. P. (1992). Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Physics Review A, 45, 8185

    Article  Google Scholar 

  11. Andersen, G. (2010). Membrane photon sieve telescopes. Applied Optics, 49, 6391–6394

    Article  Google Scholar 

  12. Kim, H. J., Hariharan, S., Julian, M., & Macdonnell, D. G. (2018). Technology and opportunities of photon sieve CubeSat with deployable optical membrane. Aerospace Science and Technology, 80, 212–220

    Article  Google Scholar 

  13. Roose, S., Stockman, Y., Derauw, D., Datashvlli, L., & Baier, H. (2014). The challenges for large lightweight diffractive lenses for space telescopes. Proceedings of SPIE, 10563, 105635Y

    Google Scholar 

  14. Julian, M. N., MacDonnell, D. G., & Gupta, M. C. (2018). Flexible binary phase photon sieves on polyimide substrates by laser ablation. Optics Letters, 43, 2368–2371

    Article  Google Scholar 

  15. Andersen, G., & Tullson, D. (2007). Broadband antihole photon sieve telescope. Applied Optics, 46, 3706–3708

    Article  Google Scholar 

  16. Jia, J., Jiang, J., Xie, C., & Liu, M. (2008). Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system. Optics Communication, 281, 4536–4539

    Article  Google Scholar 

  17. Jang, W. K., Kang, Y. S., Seo, Y. H., & Kim, B. H. (2018). Optical properties of nanohole arrays with various depths. International Journal of Precision Engineering and Manufacturing, 19, 1837–1842

    Article  Google Scholar 

  18. Sun, W., Hu, Y., MacDonnell, D. G., Kim, H. J., Weimer, C., & Baize, R. R. (2017). Fully transparent photon sieve. Optics Express, 25, 17356–17363

    Article  Google Scholar 

  19. Wong, C. P., Moon, K. S., & Li, Y. (2010). Nano-bio-electronic, photonic and MEMS packaging. Springer

    Book  Google Scholar 

  20. Narasimha, S. P., & William, H. K. (2008). MISSE 6: Testing materials in space. Proceedings of SPIE, 7095, 7095D

    Google Scholar 

  21. Wade, A. R., Mansell, G. L., Chua, S. S., Ward, R. L., Slagmolen, B. J., Shaddock, D. A., & McClelland, D. G. (2015). A squeezed light source operated under high vacuum. Scientific Reports, 5, 1–6

    Article  Google Scholar 

  22. Kim, J., Kim, J. W., Kim, H. C., Zhai, L., Ko, H.-U., & Muthoka, R. M. (2019). Review of soft actuator materials. International Journal of Precision Engineering and Manufacturing, 20, 2221–2241

    Article  Google Scholar 

  23. Kim, H. C., Kim, J. W., Zhai, L., & Kim, J. (2019). Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields. Cellulose, 26, 5821–5829

    Article  Google Scholar 

  24. Choi, S. H., Duzik, A. J., Kim, H. J., Park, Y., Kim, J., Ko, H. U., Kim, H. C., Yun, S., & Kyung, K. U. (2017). Perspective and potential of smart optical materials. Smart Materials & Structures, 26, 093001

    Article  Google Scholar 

  25. Kim, H. C., Kim, D., Lee, J. Y., Zhai, L., & Kim, J. (2019). Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 1–9

    Article  Google Scholar 

  26. Duzik, A., Ko, H.U., Kim, H.J., Kim, J., Kim, J.H., Choi, S.H., & Bryant, R.G. (2019). Fabrication method, characteristics and applications of cellulose nano fiber (CNF) film. NASA Technical Memorandum, NASA/TM-2019-220268

  27. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., Song, J.-H., Jang, K.-H., & Ahn, S.-H. (2014). Hybrid manufacturing in micro/nano scale: A Review. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 75–92

    Article  Google Scholar 

  28. Abubaker, S. S., & Zhang, Y. (2019). Optimization design and fabrication of polymer micro needle by hot embossing method. International Journal of Precision Engineering and Manufacturing, 20, 631–640

    Article  Google Scholar 

  29. Chung, H., Lee, N., Ko, J., Lee, T., Lee, P.-H., & Choi, J. Y. (2019). Optimal powder deposition process to develop a new direct-write additive manufacturing system. International Journal of Precision Engineering and Manufacturing, 20, 1057–1067

    Article  Google Scholar 

  30. Kim, J., Lee, W. J., & Park, H. W. (2016). The state of the art in the electron beam manufacturing processes. International Journal of Precision Engineering and Manufacturing, 17, 1575–1585

    Article  Google Scholar 

  31. Lee, C.-M., Woo, W.-S., Kim, D.-H., Oh, W.-J., & Oh, N.-S. (2016). Laser-assisted hybrid processes: A review. International Journal of Precision Engineering and Manufacturing, 17, 257–267

    Article  Google Scholar 

  32. Hai, L. V., Zhai, L., Kim, H. C., Kim, J. W., Choi, E. S., & Kim, J. (2018). Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 191, 65–70

    Article  Google Scholar 

  33. Julian, M. N., MacDonnell, D. G., & Gupta, M. C. (2019). High-efficiency flexible multilevel photon sieves by single-step laser-based fabrication and optical analysis. Applied Optics, 58, 109–114

    Article  Google Scholar 

  34. Terinte, N., Ibbett, R., & Schuster, K. C. (2011). Overview on native cellulose and microcrystalline cellulose i structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89, 118–131

    Google Scholar 

  35. Nascimento, P., Marim, R., Carvalho, G., & Mali, S. (2016). Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Materials Research, 19, 167–174

    Article  Google Scholar 

  36. Jiang, F., & Hsieh, Y. L. (2016). Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods. ACS Sustainable Chemistry & Engineering, 4, 1041–1049

    Article  Google Scholar 

  37. Trivedi, M. K., Nayak, G., Patil, S., Tallapragada, R. M., & Mishra, R. (2015). Impact of biofield treatment on chemical and thermal properties of cellulose and cellulose acetate. Journal of Bioengineering and Biomedical Science, 5, 01491596

    Google Scholar 

  38. Bag, M., & Valenzuela, L. (2017). Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review. International Journal of Molecular Science, 18, 1422

    Article  Google Scholar 

  39. Park, J. J., Won, P., & Ko, S. H. (2019). A review on hierarchical Origami and Kirigami structure for engineering applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 147–161

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2015R1A3A2066301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehwan Kim.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 697 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.C., Zhai, L., Panicker, P.S. et al. Transparent and Flexible Photon Sieve Made with Cellulose Nanofiber by Micro-Nano Structure Molding. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1165–1175 (2022). https://doi.org/10.1007/s40684-021-00359-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00359-y

Keywords

Navigation