Skip to main content
Log in

Morphological Effects of Polytetrafluoroethylene Meniscus Formation on Microscopic Transport Properties of Inhomogeneous Random Porous Gas Diffusion Media for Electrochemical Applications

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this study, the microscopic transport properties of porous gas diffusion media (PGDMs) with capillary meniscus formation are evaluated using a statistical approach for electrochemical applications. The microscopic morphology of PGDM is stochastically modeled using randomly distributed carbon fibers and various meniscus formations. In particular, the meniscus formation of hydrophobic polytetrafluorethylene (PTFE) agent enables the generation of highly elaborate microstructures in commercial PGDMs. A single-phase three-dimensional 19-velocity lattice Boltzmann method is applied to simulate the microscale mass transfer phenomena within the PGDMs. The mass transport characteristics (i.e., anisotropic permeability, tortuosity, and effective diffusion coefficient) of the PGDM samples with different PTFE content are statistically investigated as a function of untreated porosity (i.e., porosity before PTFE loading) of the PGDMs. The predicted results reveal an inverse relationship between anisotropic permeability and PTFE loading because the addition of PTFE decreases the bulk porosity of the PGDMs. In addition, the electrical and thermal conductivities of PGDMs are statistically estimated in both the in-plane and through-plane directions. The results show that the in-plane electrical and thermal conductivities are greater than those in the through-plane direction because of the carbon-fiber orientation. Moreover, the addition of PTFE has relatively larger effects on the through-plane electrical and thermal conductivities.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mench, M. M. (2008). Fuel cell engines. Wiley.

    Book  Google Scholar 

  2. Tamayol, A., McGregor, F., & Bahrami, M. (2012). Single phase through-plane permeability of carbon paper gas diffusion layers. Journal of Power Sources, 204, 94–99. https://doi.org/10.1016/j.jpowsour.2011.11.084

    Article  Google Scholar 

  3. Lamanna, J. M., & Kandlikar, S. G. (2011). Determination of effective water vapor diffusion coefficient in PEMFC gas diffusion layers. International Journal of Hydrogen Energy, 36(8), 5021–5029. https://doi.org/10.1016/j.ijhydene.2011.01.036

    Article  Google Scholar 

  4. Hwang, G. S., & Weber, A. Z. (2012). Effective-diffusivity measurement of partially-saturated fuel-cell gas-diffusion layers. Journal of the Electrochemical Society, 159(11), F683–F692. https://doi.org/10.1149/2.024211jes

    Article  Google Scholar 

  5. Mangal, P., Pant, L. M., Carrigy, N., Dumontier, M., Zingan, V., Mitra, S., & Secanell, M. (2015). Experimental study of mass transport in PEMFCs: Through plane permeability and molecular diffusivity in GDLs. Electrochimica Acta, 167, 160–171. https://doi.org/10.1016/j.electacta.2015.03.100

    Article  Google Scholar 

  6. Gurau, V., Bluemle, M. J., De Castro, E. S., Tsou, Y. M., Zawodzinski, T. A., & Mann, J. A. (2007). Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells 2 Absolute permeability. Journal of Power Sources, 165(2), 793–802. https://doi.org/10.1016/j.jpowsour.2006.12.068.1

    Article  Google Scholar 

  7. El-Kharouf, A., Mason, T. J., Brett, D. J. L., & Pollet, B. G. (2012). Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells. Journal of Power Sources, 218, 393–404. https://doi.org/10.1016/j.jpowsour.2012.06.099

    Article  Google Scholar 

  8. Chan, C., Zamel, N., Li, X., & Shen, J. (2012). Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells. Electrochimica Acta, 65, 13–21. https://doi.org/10.1016/j.electacta.2011.12.110

    Article  Google Scholar 

  9. Zamel, N., Astrath, N. G. C., Li, X., Shen, J., Zhou, J., Astrath, F. B. G., Wang, H., & Liu, Z. S. (2010). Experimental measurements of effective diffusion coefficient of oxygen-nitrogen mixture in PEM fuel cell diffusion media. Chemical Engineering Science, 65(2), 931–937. https://doi.org/10.1016/j.ces.2009.09.044

    Article  Google Scholar 

  10. Zamel, N., Li, X., & Shen, J. (2009). Correlation for the effective gas diffusion coefficient in carbon paper diffusion media. Energy & Fuels, 23, 6070–6078. https://doi.org/10.1021/ef900653x

    Article  Google Scholar 

  11. Khandelwal, M., & Mench, M. M. (2006). Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 161(2), 1106–1115. https://doi.org/10.1016/j.jpowsour.2006.06.092

    Article  Google Scholar 

  12. Karimi, G., Li, X., & Teertstra, P. (2010). Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media. Electrochimica Acta, 55(5), 1619–1625. https://doi.org/10.1016/j.electacta.2009.10.035

    Article  Google Scholar 

  13. Chen, T., Liu, S., Zhang, J., & Tang, M. (2019). Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC. International of Heat and Mass Transfer, 128, 1168–1174. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.097

    Article  Google Scholar 

  14. Ismail, M. S., Damjanovic, T., Ingham, D. B., Pourkashanian, M., & Westwood, A. (2010). Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells. Journal of Power Sources, 195(9), 2700–2708. https://doi.org/10.1016/j.jpowsour.2009.11.069

    Article  Google Scholar 

  15. Hao, L., & Cheng, P. (2009). Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers. Journal of Power Sources, 186(1), 104–114. https://doi.org/10.1016/j.jpowsour.2008.09.086

    Article  Google Scholar 

  16. Sadeghifar, H., Djilali, N., & Bahrami, M. (2014). Effect of Polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: modeling and experiments. Journal of Power Sources, 248, 632–641. https://doi.org/10.1016/j.jpowsour.2013.09.136

    Article  Google Scholar 

  17. Yablecki, J., & Bazylak, A. (2012). Determining the effective thermal conductivity of compressed PEMFC GDLs through thermal resistance modelling. Journal of Power Sources, 217, 470–478. https://doi.org/10.1016/j.jpowsour.2012.06.011

    Article  Google Scholar 

  18. Nabovati, A., Hinebaugh, J., Bazylak, A., & Amon, C. H. (2014). Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells. Journal of Power Sources, 248, 83–90. https://doi.org/10.1016/j.jpowsour.2013.09.061

    Article  Google Scholar 

  19. García-Salaberri, P. A., Hwang, G., Vera, M., Weber, A. Z., & Gostick, J. T. (2015). Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: effect of through-plane saturation distribution. International Journal of Heat and Mass Transfer, 86, 319–333. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.073

    Article  Google Scholar 

  20. Veyret, D., & Tsotridis, G. (2010). Numerical determination of the effective thermal conductivity of fibrous materials. Application to proton exchange membrane fuel cell gas diffusion layers. Journal of Power Sources, 195(5), 1302–1307. https://doi.org/10.1016/j.jpowsour.2009.09.028

    Article  Google Scholar 

  21. Flückiger, R., Marone, F., Stampanoni, M., Wokaun, A., & Büchi, F. N. (2011). Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy. Electrochimica Acta, 56, 2254–2262. https://doi.org/10.1016/j.commatsci.2006.01.018

    Article  Google Scholar 

  22. Ostadi, H., Rama, P., Liu, Y., Chen, R., Zhang, X. X., & Jiang, K. (2010). 3D reconstruction of a gas diffusion layer and a microporous layer. Journal of Membrane Science, 351, 69–74. https://doi.org/10.1016/j.memsci.2010.01.031

    Article  Google Scholar 

  23. Fazeli, M., Hinebaugh, J., & Bazylak, A. (2015). Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling. Journal of the Electrochemical Society, 162, F661–F668. https://doi.org/10.1149/2.0191507jes

    Article  Google Scholar 

  24. Satjaritanun, P., Hirano, S., Shum, A. D., Zenyuk, I. V., Weber, A. Z., Weidner, J. W., & Shimpalee, S. (2018). Fundamental understanding of water movement in gas diffusion layer under different arrangements using combination of direct modeling and experimental visualization. Journal of the Electrochemical Society, 165, F1115–F1126. https://doi.org/10.1149/2.0201814jes

    Article  Google Scholar 

  25. Gostick, J. T., Gunterman, H., Kienitz, B., Newman, J., MacDowell, A., & Weber, A. (2010). Tomographic imaging of water injection and withdrawal in PEMFC gas diffusion layers. ECS Transactionsm, 33, 1407–1412. https://doi.org/10.1149/1.3484632

    Article  Google Scholar 

  26. Eller, J., Rosén, T., Marone, F., Stampanoni, M., Wokaun, A., & Büchi, F. N. (2011). Progress in in situ X-ray tomographic microscopy of liquid water in gas diffusion layers of PEFC. Journal of the Electrochemical Society, 158, B963–B970. https://doi.org/10.1149/1.3596556

    Article  Google Scholar 

  27. Su, H., Sita, C., & Pasupathi, S. (2016). The effect of gas diffusion layer PTFE content on the performance of high temperature proton exchange membrane fuel cell. Journal of the Electrochemical Society. https://doi.org/10.20964/110402919

    Article  Google Scholar 

  28. Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., & Ohser, J. (2006). Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Computational Materials Science, 38, 56–66. https://doi.org/10.1016/j.ces.2010.03.047

    Article  Google Scholar 

  29. Thiedmann, R., Fleischer, F., Hartnig, C., Lehnert, W., & Schmidt, V. (2008). Stochastic 3D modeling of the GDL structure in PEMFCs based on thin section detection. Journal of the Electrochemical Society, 155, B391–B399. https://doi.org/10.1149/1.2839570

    Article  Google Scholar 

  30. Wang, Y., Cho, S., Thiedmann, R., Schmidt, V., Lehnert, W., & Feng, X. (2010). Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells. International Journal of Heat and Mass Transfer, 53, 1128–1138. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.044

    Article  MATH  Google Scholar 

  31. Daino, M. M., & Kandlikar, S. G. (2012). 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions. International Journal of Hydrogen Energy, 37, 5180–5189. https://doi.org/10.1016/j.ijhydene.2011.12.050

    Article  Google Scholar 

  32. Tayarani-Yoosefabadi, Z., Harvey, D., Bellerive, J., & Kjeang, E. (2016). Stochastic microstructural modeling of fuel cell gas diffusion layers and numerical determination of transport properties in different liquid water saturation levels. Journal of Power Sources, 303, 208–221. https://doi.org/10.1016/j.jpowsour.2015.11.005

    Article  Google Scholar 

  33. Becker, J., Flückiger, R., Reum, M., Büchi, F. N., Marone, F., & Stampanoni, M. (2009). Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy. Journal of the Electrochemical Society, 156, B1175–B1181. https://doi.org/10.1149/1.3176876

    Article  Google Scholar 

  34. El Hannach, M., & Kjeang, E. (2014). Stochastic microstructural modeling of PEFC gas diffusion media. Journal of the Electrochemical Society, 161, F951–F960. https://doi.org/10.1149/2.1141409jes

    Article  Google Scholar 

  35. Zamel, N., Li, X., Shen, J., Becker, J., & Wiegmann, A. (2010). Estimating effective thermal conductivity in carbon paper diffusion media. Chemical Engineering Science, 65, 3994–4006. https://doi.org/10.1016/j.ces.2010.03.047

    Article  Google Scholar 

  36. Radhakrishnan, A., Lu, Z., & Kandlikar, S. G. (2010). Effective thermal conductivity of gas diffusion layers used in PEMFC: measured with guarded-hot-plate method and predicted by a fractal model. ECS Transactions, 33, 1163–1176. https://doi.org/10.1149/1.3484610

    Article  Google Scholar 

  37. Zar, J. H. (1999). Biostatistical analysis. (4th ed.). Prentice Hall.

    Google Scholar 

  38. Spiegel, C. (2008). PEM Fuel Cell Modeling and Simulation Using Matlab. Academic Press. https://doi.org/10.1016/B978-0-12-374259-9.X5001-0.

  39. Wargo, E. A., Schulz, V. P., & Kumbur, E. C. (2014). PTFE distributions in diffusion media of PEFCs and related effects on water transport. ECS Transactions, 64, 459–465. https://doi.org/10.1149/06403.0459ecst

    Article  Google Scholar 

  40. Udell, K. S. (1985). Heat transfer in porous media considering phase change and capillarity-the heat pipe effect. International Journal of Heat and Mass Transfer, 28(2), 485–495. https://doi.org/10.1016/0017-9310(85)90082-1

    Article  MATH  Google Scholar 

  41. Leverett, M. C. (1940). Capillary Behavior in Porous Solids. Transactions of AIME. https://doi.org/10.2118/941152-g

    Article  Google Scholar 

  42. Hao, L., & Cheng, P. (2012). Capillary pressures in carbon paper gas diffusion layers having hydrophilic and hydrophobic pores. International Journal of Heat and Mass Transfer, 55, 133–139. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.049

    Article  MATH  Google Scholar 

  43. Kumbur, E. C., Sharp, K. V., & Mench, M. M. (2007). On the effectiveness of Leverett approach for describing the water transport in fuel cell diffusion media. Journal of Power Sources, 168, 356–368. https://doi.org/10.1016/j.jpowsour.2007.02.054

    Article  Google Scholar 

  44. Mittal, K.L. (1983). Adhesion Aspects of Polymeric Coatings (pp. 253–260). Plenum Press. https://doi.org/10.1016/0143-7496(84)90109-x.

  45. Simon, C., Kartouzian, D., Müller, D., Wilhelm, F., & Gasteiger, H. A. (2017). Impact of microporous layer pore properties on liquid water transport in PEM fuel cells: Carbon black type and perforation. Journal of the Electrochemical Society, 164(14), F1697-1711. https://doi.org/10.1149/2.1321714jes

    Article  Google Scholar 

  46. Cekmer, O., Um, S., & Mench, M. M. (2016). A combined path-percolation - Lattice-Boltzmann model applied to multiphase mass transfer in porous media. Intertional Journal of Heat and Mass Transfer, 93, 257–272. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.012

    Article  Google Scholar 

  47. Han, B., Ni, M., & Meng, H. (2016). Three-dimensional lattice Boltzmann simulation of liquid water transport in porous layer of PEMFC. Entropy, 18(1), 17. https://doi.org/10.3390/e18010017

    Article  Google Scholar 

  48. Guo, Z., Shu, C. (2013). Advances in Computational Fluid Dynamics-Vol. 3-Lattice Boltzmann Method and its Applications in Engineering. World Scientific Publishing Co. Pte. Ltd.

  49. White, F. M. (2005). Viscous Fluid Flow. (3rd ed., pp. 46–47). McGraw-Hill Education.

    Google Scholar 

  50. Liu, J., Shin, S., & Um, S. (2019). Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice Boltzmann method for fuel cell applications. Renewable Energy, 139, 279–291. https://doi.org/10.1016/j.renene.2019.02.089

    Article  Google Scholar 

  51. Su, H., Xu, Q., Chong, J., Li, H., Sita, C., & Pasupathi, S. (2017). Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell. Journal of Power Sources, 341, 302–308. https://doi.org/10.1016/j.jpowsour.2016.12.029

    Article  Google Scholar 

  52. Shin, S., Kim, A.-R., & Um, S. (2018). Computational prediction of nanoscale transport characteristics and catalyst utilization in fuel cell catalyst layers by the lattice Boltzmann method. Electrochimica Acta, 275, 87–99. https://doi.org/10.1016/j.electacta.2018.04.138

    Article  Google Scholar 

  53. Cengel, Y.A., Ghajar, A.J. (2015). Heat and Mass Transfer, Fundamentals & Application. (5th ed., pp. 129).

  54. Heaney, M.B. (2003). Electrical conductivity and resistivity. In J.G. Webster (Ed.), Electrical Measurement, Signal Process, and Displays (pp. 7.1). https://doi.org/10.1201/9780203009406.

  55. Huang, J., Baird, D. G., & McGrath, J. E. (2005). Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials. Journal of Power Sources, 150, 110–119. https://doi.org/10.1016/j.jpowsour.2005.02.074

    Article  Google Scholar 

  56. Newcomb, B. A., Giannuzzi, L. A., Lyons, K. M., Gulgunje, P. V., Gupta, K., Liu, Y., Kamath, M., McDonald, K., Moon, J., Feng, B., Peterson, G. P., Chae, H. G., & Kumar, S. (2015). High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities. Carbon, 93, 502–514. https://doi.org/10.1016/j.carbon.2015.05.037

    Article  Google Scholar 

  57. Rohendi, D., Majlan, E. H., Mohamad, A. B., Daud, W. R. W., Kadhum, A. A. H., & Shyuan, L. K. (2014). Effect of PTFE content and sintering temperature on the properties of a fuel cell electrode backing layer. Journal of Fuel Cell Science and Technology. https://doi.org/10.1115/1.4026932

    Article  Google Scholar 

  58. Sadeghi, E., Djilali, N., & Bahrami, M. (2011). A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells. Journal of Power Sources, 196(7), 3565–3571. https://doi.org/10.1016/j.jpowsour.2010.11.151

    Article  Google Scholar 

  59. Yamane, T., Katayama, S., Todoki, M., & Hatta, I. (2000). The measurements of thermal conductivity of carbon fibers. Journal of Wide Bandgap Materials, 7(4), 294–305. https://doi.org/10.1106/QLXQ-CADP-HC2M-F14U

    Article  Google Scholar 

  60. Chen, J., Long, Y., Xiong, X., & Xiao, P. (2012). Microstructure and thermal conductivity of carbon/carbon composites made with different kinds of carbon fibers. Journal of Central South University, 19, 1780–1784. https://doi.org/10.1007/s11771-012-1207-y

    Article  Google Scholar 

  61. Cox, D.R., Hinkley, D.V. (1979). Theoretical Statistics. CRC Press. https://doi.org/10.1007/978-1-4899-2887-0

  62. Plackett, R. L. (1962). The advanced theory of statistics: Vasdol 2-inference and relationship. Journal of the Royal Statistical Society Series A (Statistics in Society), 125(2), 284–286. https://doi.org/10.2307/2982331

    Article  MathSciNet  Google Scholar 

  63. Mavridis, D. C., & Aitken, G. G. (2009). Sample size determination for categorical responses. Journal of Forensic Sciences, 54(1), 135–151. https://doi.org/10.1111/j.1556-4029.2008.00920.x

    Article  Google Scholar 

  64. Liu, J., Shin, Um., & S. . (2019). Interfacial transport characteristics between heterogeneous porous composite media for effective mass transfer in fuel cells. International Journal of Energy Research, 43(7), 2990–3005. https://doi.org/10.1002/er.4500

    Article  Google Scholar 

  65. Bevilacqua, N., George, M. G., Galbiati, S., Bazylak, A., & Zeis, R. (2017). Phosphoric acid invasion in high temperature pem fuel cell gas diffusion layers. Electrochimica Acta, 257, 89–98. https://doi.org/10.1016/j.electacta.2017.10.054

    Article  Google Scholar 

  66. Hwang, Y. S., Choi, H., Cho, G. Y., Lee, Y. H., & Cha, S. W. (2014). Effect of compression thickness on performance of gas diffusion layer of direct methanol fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 215–221. https://doi.org/10.1007/s40684-014-0027-y

    Article  Google Scholar 

  67. Cheema, T. A., Kim, G. M., Lee, C. Y., et al. (2014). Effects of composite porous gas-diffusion layers on performance of proton exchange membrane fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 305–312. https://doi.org/10.1007/s40684-014-0037-9

    Article  Google Scholar 

  68. Kim, J. W., & Lee, D. G. (2014). Study on the fiber orientation during compression molding of reinforced thermoplastic composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 335–339. https://doi.org/10.1007/s40684-014-0042-z

    Article  Google Scholar 

  69. Kim, A. R., Jung, H., & Um, S. (2014). An engineering approach to optimal metallic bipolar plate designs reflecting gas diffusion layer compression effects. Energy, 66, 50–55

    Article  Google Scholar 

  70. Wang, Y., & Wang, S. (2017). Evaluation and modeling of PEM fuel cells with the Bruggeman correlation under various tortuosity factors. International Journal of Heat and Mass Transfer, 105, 18–23. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.030

    Article  Google Scholar 

  71. Litster, S., Epting, W. K., Wargo, E. A., Kalidindi, S. R., & Kumbur, E. C. (2013). Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging. Fuel Cells, 13(5), 935–945. https://doi.org/10.1002/fuce.201300008

    Article  Google Scholar 

  72. Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1955). Molecular theory of gases and liquids. Physics Today. DOI, 10(1063/1), 3061949

    Google Scholar 

  73. He, W., Lu, W., Dickerson, J.H. (2014). Gas Transport in Solid Oxide Fuel Cells. Cham: Springer International Publishing (pp. 9). https://doi.org/10.1007/978-3-319-09737-4.

  74. Welty, J.R., Wicks, C.E., Wilson, R.E. (1984). Fundamentals of momentum, heat, and mass transfer, (third ed., pp. 89).

  75. Duda, A., Koza, Z., & Matyka, M. (2011). Hydraulic tortuosity in arbitrary porous media flow. Physical Review, E. https://doi.org/10.1103/PhysRevE.84.036319

    Article  Google Scholar 

  76. Sun, Z., Tang, X., & Cheng, G. (2013). Numerical simulation for tortuosity of porous media. Microporous and Mesoporous Materials, 173, 37–42. https://doi.org/10.1016/j.micromeso.2013.01.035

    Article  Google Scholar 

  77. Currie, J. A. (1960). Gaseous diffusion in porous media. Part 2—Dry granular materials. British Journal of Applied Physics, 11(8), 318. https://doi.org/10.1088/0508-3443/11/8/303

    Article  Google Scholar 

  78. Flückiger, R., Freunberger, S. A., Kramer, D., Wokaun, A., Scherer, G. G., & Büchi, F. N. (2008). Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC. Electrochimica Acta, 54(2), 551–559. https://doi.org/10.1016/j.electacta.2008.07.034

    Article  Google Scholar 

  79. Park, S. B., & Park, Yi. (2012). Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC). International Journal of Precision Engineering and Manufacturing, 13, 1145–1151. https://doi.org/10.1007/s12541-012-0152-x

    Article  Google Scholar 

  80. Neale, G. H., & Nader, W. K. (1973). Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles. AIChE Journal, 19(1), 112–119. https://doi.org/10.1002/aic.690190116

    Article  Google Scholar 

  81. Hussaini, I. S., & Wang, C. Y. (2010). Measurement of relative permeability of fuel cell diffusion media. Journal of Power Sources, 195, 3830–3840. https://doi.org/10.1016/j.jpowsour.2009.12.105

    Article  Google Scholar 

  82. Ismail, M. S., Damjanovic, T., Hughes, K., Ingham, D. B., Ma, L., Pourkashanian, M., & Rosli, M. (2010). Through-plane permeability for untreated and PTFE-treated gas diffusion layers in proton exchange membrane fuel cells. Journal of Fuel Cell Science and Technology. https://doi.org/10.1115/1.4000685

    Article  Google Scholar 

  83. Carrigy, N. B., Pant, L. M., Mitra, S., & Secanell, M. (2012). Knudsen diffusivity and permeability of PEMFC microporous coated gas diffusion layers for different polytetrafluoroethylene loadings. Journal of the Electrochemical Society, 160(2), F81. https://doi.org/10.1149/2.036302jes

    Article  Google Scholar 

  84. Alhazmi, N., Ingham, D. B., Ismail, M. S., Hughes, K., Ma, L., & Pourkashanian, M. (2014). The through-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly and gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources, 270, 59–67. https://doi.org/10.1016/j.jpowsour.2014.07.082

    Article  Google Scholar 

  85. Shi, Y., Cheng, S., & Quan, S. (2012). Fractal-based theoretical model on saturation and relative permeability in the gas diffusion layer of polymer electrolyte membrane fuel cells. Journal of Power Sources, 209, 130–140

    Article  Google Scholar 

  86. Kleemann, J., Finsterwalder, F., & Tillmetz, W. (2009). Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. Journal of Power Sources, 190(1), 92–102. https://doi.org/10.1016/j.jpowsour.2008.09.026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea [grant numbers 2016M1A2A2937162 and 2018M1A2A2063176] and the Korea Evaluation Institute of Industrial Technology [grant number 20012133].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukkee Um.

Ethics declarations

Conflict of Interest

There are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chung, SJ., Akbar, A. et al. Morphological Effects of Polytetrafluoroethylene Meniscus Formation on Microscopic Transport Properties of Inhomogeneous Random Porous Gas Diffusion Media for Electrochemical Applications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1101–1119 (2022). https://doi.org/10.1007/s40684-021-00361-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00361-4

Keywords

Navigation