Skip to main content
Log in

Investigations on the Highly Sensitive Metal-Coated Broad Range D-Shaped Optical Fiber Refractive Index Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we present a detailed study on surface plasmon resonance (SPR)-based D-shaped single-mode optical fiber sensor for the range of refractive index (RI) 1.33–1.42 sensing using the finite element method (FEM). Gold (Au), silver (Ag), and copper (Cu) metal layers have used separately to investigate the performance of proposed sensor employed with SPR conditions. Average and maximum sensitivity of the sensor increases with the thicknesses of the metal layer. We observe the higher sensitivity for the Au layer in comparison to Ag and Cu layers. Sensor with Au layer with 50 nm thickness shows the average sensitivity of 5855 nm/RIU with maximum sensitivity of 15,200 nm/RIU and resolution 1.780 × 10−5 RIU. The figure of merit (FOM) has also investigated for such sensor. The sensing performance of the sensor sequentially decreases with Ag and Cu layers. The proposed optical fiber sensors with high sensing performance can be utilized as RI sensors for different chemical and biological sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials/Code Availability

Data and code of this work will be available from the corresponding author upon reasonable request.

References

  1. Prabowo BA, Purwidyantri A, Liu KC (2018) Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 8:80

    Article  CAS  PubMed Central  Google Scholar 

  2. Salamon Z, Macleod HA, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim Biophys Acta 1331:117–129

    Article  CAS  PubMed  Google Scholar 

  3. Liedberg B, Nylander C, Sundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators B 4:299–304

    Article  CAS  Google Scholar 

  4. Xiao F, Michel D, Li G, Xu A, Alameh K (2014) Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. J Lightwave Technol 32(21):4169–4173

    Article  Google Scholar 

  5. Pathak AK, Chaudhary DK, Singh VK (2018) Broad range and highly sensitive optical pH sensor based on hierarchical ZnO micro flowers over tapered silica fiber. Sens Actuators A 280:399–405

    Article  CAS  Google Scholar 

  6. Nguyen H, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5):10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elshorbagy MH, Cuadrado AA, Alda J (2017) High-sensitivity integrated devices based on surface plasmon resonance for sensing applications. Photonics Res 5(6):654–661

    Article  CAS  Google Scholar 

  8. Sharma AK, Pandey AK, Kaur B (2018) A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt Fiber Technol 43:20–34

    Article  CAS  Google Scholar 

  9. Kretschmann E, Reather H (1968) Radiative decay of non-radiative surface plasmons excited by light. Naturforsch 23:2135–2136

    Article  CAS  Google Scholar 

  10. Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407(14):3883–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Otto A (1968) Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398–410

    Article  CAS  Google Scholar 

  12. Kretschmann E (1971) Die BestimmungoptischerKonstanten von MetallendurchAnregung von Oberflachenplasmashwingungen. Z Phys 241:313–324

    Article  CAS  Google Scholar 

  13. Nayak JK, Jha R (2017) Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing. Appl Opt 56(12):3510–3517

    Article  CAS  PubMed  Google Scholar 

  14. Gowri A, Sai VVR (2016) Development of LSPR based U-bent plastic optical fiber sensors. Sens Actuators B 230:536–543

    Article  CAS  Google Scholar 

  15. Hasan M, Akter S, Rifat A, Rana S, Ali S (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4:18

    Article  CAS  Google Scholar 

  16. Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A, Mahdiraji GA, Yun SH, Adikan FRM (2017) Photonic crystal fiber based plasmonic sensors. Sens Actuators, B 243:311–325

    Article  CAS  Google Scholar 

  17. Monfared YE (2020) Refractive index sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fiber coated by titanium nitride. Plasmonics 15:535–542

    Article  CAS  Google Scholar 

  18. Srivastava SK, Arora V, Sapra S, Gupta BD (2012) Localized surface plasmon resonance based fiber optic U-shaped biosensor for the detection of blood glucose. Plasmonics 7:261–268

    Article  CAS  Google Scholar 

  19. Suhailin FH, Alwahib AA, Kamil YM, Abu Bakar MH, Huang NM, Mahdi MA (2020) Fiber-based surface plasmon resonance sensor for lead ion detection in aqueous solution. Plasmonics 15:1369

    Article  CAS  Google Scholar 

  20. Sharma NK, Rani M, Sajal V (2013) Surface plasmon resonance based fiber optic sensor with double resonance dips. Sens Actuators B 188:326–333

    Article  CAS  Google Scholar 

  21. Gangwar RK, Singh VK (2017) Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics 12:1367–1372

    Article  CAS  Google Scholar 

  22. Tan CZ (1998) Determination of refractive index of silica glass for infrared wavelengths by ir spectroscopy. J Non-Cryst Solids 223:158–163

    Article  CAS  Google Scholar 

  23. Wang T, Zhang M, Liu K, Jiang J, Zhao Y, Mac J, Liu T (2019) The effect of the TiO2 film on the performance of the optical fiber SPR sensor. Opt Commu 448:93–97

    Article  CAS  Google Scholar 

  24. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099–1119

    Article  CAS  PubMed  Google Scholar 

  25. Shukla S, Sharma NK, Sejal V (2015) Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study. Sens Actuator B 206:463–470

    Article  CAS  Google Scholar 

  26. Feliziani M, Maradei F (1997) Edge element analysis of complex configurations in presence of shields. IEEE Trans Magn 33:1548–1551

    Article  Google Scholar 

  27. Yang Z, Xia L, Li C, Chen X, Liu D (2019) A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection. Opt Commu 430:195–203

    Article  CAS  Google Scholar 

  28. Sharma AK, Gupta BD (2007) On the performance of different bimetallic combination in surface plasmon resonance based fiber optic sensor. J Appl Phys 101:093111

    Article  CAS  Google Scholar 

  29. Qing-QingMeng ZX, Lin CY (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors 17:1846

    Article  Google Scholar 

  30. Zhang S, Li J, Li S, Liu Q (2018) Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings. J Phys D: Appl Phys 51:305104

    Article  CAS  Google Scholar 

  31. Ozcariz A, Piña-Azamar DA, Zamarreno CR (2019) Aluminum doped zinc oxide (AZO) coated optical fiber LMR refractometers-an experimental demonstration. Sens Actuators, B Chem 281:698–704

    Article  CAS  Google Scholar 

  32. Kapoor V, Sharma NK, Sajal V (2019) Effect of zinc oxide overlayer on the sensitivity of optic fiber SPR sensor with indium tin oxide layers. Optik-Int J for Light and Electron Opt 185:464–468

    Article  CAS  Google Scholar 

  33. Wang Q, Sun B, Hu E, Wei W (2019) Cu/ITO-Coated uncladded fiber-optic biosensor based on surface plasmon resonance. IEEE Photonics Technol Lett 31:1159–1162

    Article  CAS  Google Scholar 

  34. Semwal V, Gupta BD (2019) Experimental studies on the sensitivity of the propagating and localized surface plasmon resonance-based tapered fiber optic refractive index sensors. Appl Opt 58:4149

    Article  CAS  PubMed  Google Scholar 

  35. Gasior K, Martynkien T, Napiorkowski M, Zolnacz K, Mergo P, Urbanczyk W (2017) A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber. J Opt 19:025001

    Article  CAS  Google Scholar 

  36. Fontana E, Dulman HD, Doggett DE, Pantell RH (1998) Surface plasmon resonance on a single mode optical fiber. IEEE Trans Instrum Meas 47:168–173

    Article  Google Scholar 

  37. Wei W, Nong J, Zhang G, Tang L, Jiang X, Chen N, Zhu Y (2017) Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing. Sensors 17:2

    Article  CAS  Google Scholar 

  38. Tripathi SM, Kumar A, Varshney RK, Kumar YBP, Marin E, Meunier JP (2009) Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures. J Lightwave Technol 27:2348–2356

    Article  CAS  Google Scholar 

  39. Gao X, Ning T, Zhang C, Xu J, Zheng J, Lin H, Li J, Pei L, You H (2020) A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt Commun 454:124441

    Article  CAS  Google Scholar 

  40. Slavik R, Homola J, Ctyroky J (1999) Single-mode optical fiber surface plasmon resonance sensor. Sens Actuators B 54:74–79

    Article  CAS  Google Scholar 

  41. Zhao J, Cao S, Liao C, Wang Y, Wang Y, Xu X, Fu C, Xu G, Lian J, Wang Y (2016) Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens Actuators, B Chem 230:206–211

    Article  CAS  Google Scholar 

  42. Yadav TK, Narayanaswamy R, Abu Bakar MH, Kamil YM, Mahdi MA (2014) Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt Express 22(19):22802–22807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors (Hemant Kumar) is thankful to the funding agency CSIR for the fellowship. Bipin K. Singh is thankful to the University Grants Commission (UGC), India, for providing financial support in the form of Dr. D. S. Kothari Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have significant contribution in this paper.

Corresponding author

Correspondence to Praveen C. Pandey.

Ethics declarations

Conflict Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Ramani, U., Singh, B.K. et al. Investigations on the Highly Sensitive Metal-Coated Broad Range D-Shaped Optical Fiber Refractive Index Sensor. Plasmonics 16, 1963–1971 (2021). https://doi.org/10.1007/s11468-021-01448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01448-z

Keywords

Navigation