Skip to main content
Log in

Hot Deformation Behaviors of Ti-22Al-26Nb-2Ta Alloy Based on GA-LSSVM and 3D Processing Map

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The thermal compression tests of Ti-22Al-26Nb-2Ta alloy under T = 1173 ~ 1423 K and \(\dot{\varepsilon }\) = 0.001 ~ 10 s−1 were carried out on the Gleeble-3500 thermo-mechanical simulator. The flow stress curves were obtained, and the high-temperature rheological properties of the alloy were analyzed. The 3D activation energy maps were calculated and constructed. The least squares support vector machine (LSSVM) model of constitutive relation was established, and the penalty coefficient and kernel parameter of the LSSVM model were optimized by genetic algorithm (GA). The constitutive model of the alloy based on the GA-LSSVM algorithm was constructed. The predicted value of the model was also compared with the experimental data. The dynamic material model (DMM) and polar reciprocity model (PRM) were used to establish the 3D processing map of the alloy and appropriate thermal processing parameters. Our researches indicated that deformation temperature and strain rate have a great influence on the flow stress of Ti-22Al-26Nb-2Ta alloy. Ti-22Al-26Nb-2Ta alloy is a negative temperature-sensitive and a positive strain rate-sensitive material. The correlation coefficient of GA-LSSVM algorithm constitutive model is 0.9922, and the relative error of most samples is within 10%, accounting for 93.18%. The model has high prediction accuracy and strong generalization ability. The DMM processing map based on the Prasad instability criterion is more accurate in optimizing the processing parameters of the alloy than that of the PRM processing map through analyzing the 3D processing map and observing the microstructure. The instability modes in the instability region of the alloy mainly include adiabatic shear, crack, and local flow. The 1173 ~ 1273 K/0.001 ~ 0.003 s−1 are the best parameters during the processing of the alloy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Banerjee, A.K. Gogia, T.K. Nandi, V. Joshi, Acta Metall. 36, 871 (1988)

    Article  CAS  Google Scholar 

  2. S. Li, Y. Mao, J. Zhang, J. Li, Y. Cheng, Z. Zhong, T. Nonferr. Metal. Soc. 4, 582 (2002)

  3. M.R. Shagiev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, Adv. Mater. Res. 59, 105 (2009)

  4. S. Ren, K. Wang, S. Lu, Y. Huang, Q. Xu, X. Gao, Rare Metal Mat. Eng. 47, 2793 (2018)

  5. K. Tan, J. Li, Z. Guan, J. Yang, J. Shu, Mater. Design 84, 204 (2015)

    Article  CAS  Google Scholar 

  6. F.C. Ren, J. Chen, F. Chen, Appl. Mech. Mater. 552, 247 (2014)

    Article  Google Scholar 

  7. P.L. Narayana, C.-L. Li, J.-K. Hong, S.-W. Choi, C. H. Park, S.-W. Kim, S. E. Kim, N.S. Reddy, J.-T. Yeom, Met. Mater. Int. 25, 1063 (2019)

    Article  CAS  Google Scholar 

  8. L. Yang, H. Su, F. Chai, X. Luo, L. Duan, Mater. China 38, 672 (2019)

    Google Scholar 

  9. Z. Zhou, J. Morel, D. Parsons, S.V. Kucheryavskiy, A.-M. Gustavsson, Comput. Electron. Agr. 162, 246 (2019)

    Article  Google Scholar 

  10. Z. ​Yao, J. Dong, M. Zhang, L. Zheng, Q. Yu, Rare Metal Mat. Eng. 42, 1199 (2013)

    Google Scholar 

  11. Z. Shi, X. Yan, C. Duan, J. Alloy. Compd. 652, 30 (2015)

    Article  CAS  Google Scholar 

  12. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, R. Li, Mater. Design 90, 804 (2016)

    Article  CAS  Google Scholar 

  13. N.Q. Chinh, G. Racz, J. Gubicza. R.Z. Valiev, T.G. Langdon, Mater. Sci. Eng. A 759, 448 (2019)

    Article  CAS  Google Scholar 

  14. K. Sofinowski, M. Šmíd, I. Kuběna, S. Vivès, N. Casati, S. Godet, H. Van Swygenhoven, Acta Mater. 179, 224 (2019)

    Article  CAS  Google Scholar 

  15. J.K. Hwang, Met. Mater. Int. 26, 603 (2020)

    Article  CAS  Google Scholar 

  16. C.M. Li, Y. Liu, Y.B. Tan, F. Zhao, Metals 8, 846 (2018)

    Article  CAS  Google Scholar 

  17. R.R. Xu, H. Li, M.Q. Li, Mater. Design 186, 108328 (2020)

    Article  CAS  Google Scholar 

  18. M.A. Wahed, A.K. Gupta, V. Sharma, K. Mahesh, S. K. Singh, N. Kotkunde, Int. J. Adv. Manuf. Tech. 104, 3419 (2019)

    Article  Google Scholar 

  19. J.J. Jonas, C.M. Sellars, W.J.M. Tegart, Metall. Rev. 14, 1 (1969)

    Article  Google Scholar 

  20. Y.C. Lin, M.S. Chen, J. Zhong, Comput. Mater. Sci. 42, 470 (2008)

    Article  CAS  Google Scholar 

  21. P.M. Sargent, M.F. Ashby, Scripta Metall. 16, 1415 (1982)

    Article  CAS  Google Scholar 

  22. Y. Sun, Z. Wan, L. Hu, J. Ren, Mater. Design 86, 922 (2015)

    Article  CAS  Google Scholar 

  23. L. Li, M.Q. Li, Mater. Sci. Eng. A 698, 302 (2017)

    Article  CAS  Google Scholar 

  24. H. Gwon, S. Shin, J. Jeon, T. Song, S. Kim, B.C. De Cooman,  Met. Mater. Int. 25, 594 (2019)

    Article  CAS  Google Scholar 

  25. Y.P. Gu, W.J. Zhao, Z.S. Wu, J. Tsinghua Univ. (Sci. Technol.) 50, 1063 (2010)

    Google Scholar 

  26. A.O. Mosleh, A.V. Mikhaylovskaya, A.D. Kotov, J.S. Kwame, S.A. Aksenov, Materials 12, 1756 (2019)

    Article  CAS  Google Scholar 

  27. A. Mosleh, A. Mikhaylovskaya, A. Kotov, T. Pourcelot, S. Aksenov, J. Kwame, V. Portnoy, Metals 7, 568 (2017)

    Article  Google Scholar 

  28. A.O. Mosleh, A.D. Kotov, P. Mestre-Rinn, A.V.Mikhaylovskaya, Procedia Manuf. 37, 239 (2019)

    Article  Google Scholar 

  29. A.O. Mosleh, P. Mestre-Rinn, A.M. Khalil, A.D. Kotov, A.V. Mikhaylovskaya, Mater. Res. Express 7, 016504 (2020)

    Article  CAS  Google Scholar 

  30. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883 (1984)

  31. X.M. Yang, H.Z. Guo, Z.K. Yao, S.C. Yuan, S.W. Xin, Rare Metals 37, 778 (2018)

  32. A. Łukaszek-Sołek, J. Krawczyk, T. Śleboda, J. Grelowski, J. Mater Res. Technol. 8, 3281 (2019)

    Article  Google Scholar 

  33. Y.V.R.K. Prasad, J. Mater. Eng. Perform. 12, 638 (2003)

    Article  CAS  Google Scholar 

  34. Y.V.R.K. Prasad, Indian J. Technol. 28, 435 (1990)

    CAS  Google Scholar 

  35. S.B. Bhimavarapu, A.K. Maheshwari, D. Bhargava, S.P. Narayan, J. Mater. Sci. 46, 3191 (2011)

    Article  CAS  Google Scholar 

  36. T. Rajagopalachary, V.V. Kutumbarao, Scripta Mater. 35, 311 (1996)

    Article  CAS  Google Scholar 

  37. V.V. Kutumbarao, T. Rajagopalachary, B. Mater. Sci. 19, 677 (1996)

    Article  CAS  Google Scholar 

  38. S.V.S.N. Murty, B.N. Rao, Mater. Sci. Eng. A 254, 76 (1998)

    Article  Google Scholar 

  39. Q.Y. ​Yu, Z.H. Yao, J.X. Dong, P.D. Zhang, G. Han, Trans. Mater. Heat Treat. 36(7), 30 (2015)

    Google Scholar 

  40. C. Ma, G.C. Wang, Forg. Stamp. Technol. 41, 88 (2016)

    Google Scholar 

  41. Y.S. Wang, R.K. Linghu, Y.Y. Liu, J.X. Hu, J. Xu, J.W. Qiao, X.M. Wang, J. Alloy. Compd. 751, 391 (2018)

    Article  CAS  Google Scholar 

  42. L. Tan, Y. Li, F. Liu, Y. Nie, L. Jiang, J. Mater. Sci. Technol. 35, 2591 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Key Project of Natural Science Foundation of Jiangxi Province (No. 20202ACBL204001) and the National Natural Science Foundation of China (No. 51464035). The authors thank AiMi Academic Services (www.aimieditor.com) for English language editing and review services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kelu Wang or Zhengzhi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, P., Zou, H., Wang, K. et al. Hot Deformation Behaviors of Ti-22Al-26Nb-2Ta Alloy Based on GA-LSSVM and 3D Processing Map. Met. Mater. Int. 27, 4235–4249 (2021). https://doi.org/10.1007/s12540-021-01016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01016-4

Keywords

Navigation