Skip to main content

Advertisement

Log in

Novel ferrocenyl chalcone derivatives as antibacterial agents: is there a solution to the problem?

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Increased infection spread is partly facilitated by reduced new drug development. Because of their antimicrobial properties, ferrocenyl chalcone derivatives were assessed in a previous study. However, dilutions of stock ferrocenyl chalcone solution with Mueller–Hinton broth (MHB) resulted in particle formation, and a colour change from deep red to dark-brown. Results of the current study confirmed particle formation, which suggested the chelation of casein hydrolysate, a component of MHB, by iron ion. After solubilisation in dimethyl sulfoxide (DMSO), each of the iodine-containing compounds, also changed from deep red to dark-brown. Mean rates of colour change (RA) in polypropylene tubes at 37 °C were the highest (0.0102 ± 0.0005 ΔA/min−0.0041 ± 0.0009 ΔA/min) while the same observed reaction in borosilicate glass tubes 21 °C ± 1 were the lowest (0.0024 ± 0.0007 ΔA/min−0.0021 ± 0.0003 ΔA/min). Antimicrobial activity of two randomly selected ferrocenyl chalcone compounds (hexyl and heptyl) was unaffected after colour change occurred (0.016−0.125 mg/ml). Although these findings potentially indicate that short-term storage of antimicrobials is unaffected, further work is required to assess whether antimicrobial activity is affected by longer storage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu XL, Xu YJ, Go ML. Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus. Eur J Med Chem. 2008;43:1681–7. https://doi.org/10.1016/j.ejmech.2007.10.007.

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen SF, Larsen M, Boesen T, Schønning K, Kromann H. Cationic chalcone antibiotics. design, synthesis, and mechanism of action. J Med Chem. 2005;48:2667–77.

    Article  CAS  Google Scholar 

  3. Sivakumar PM, Priya S, Doble M. Synthesis, biological evaluation, mechanism of action and quantitative structure – activity relationship studies of chalcones as antibacterial agents. Chem Biol Drug Des. 2009;73:403–15. https://doi.org/10.1111/j.1747-0285.2009.00793.x

    Article  CAS  PubMed  Google Scholar 

  4. Goddard AF. Review article: factors influencing antibiotic transfer across the gastric mucosa. Aliment Pharm Ther. 1998;12:1175–84.

    Article  CAS  Google Scholar 

  5. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794:808–16. https://doi.org/10.1016/j.bbapap.2008.11.005.Outer

    Article  CAS  PubMed  Google Scholar 

  6. Lipsky BA, Byren I, Hoey CT. Treatment of bacterial prostatitis. Clin Infect Dis. 2010;50:1641–52. https://doi.org/10.1086/652861

    Article  PubMed  Google Scholar 

  7. Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858–83. https://doi.org/10.1128/CMR.00007-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rothwell JA, Day AJ, Morgan MRA. Experimental determination of octanol––water partition coefficients of quercetin and related flavonoids. J Agric Food Chem. 2005;53:4355–60.

    Article  CAS  Google Scholar 

  9. Attar S, O’Brien Z, Alhaddad H, Golden ML, Calderón-Urrea A. Ferrocenyl chalcones versus organic chalcones: a comparative study of their nematocidal activity. Bioorg Med Chem. 2011;19:2055–73. https://doi.org/10.1016/j.bmc.2011.01.048

    Article  CAS  PubMed  Google Scholar 

  10. Pejović A, Damljanović I, Stevanović D, Vukićević M, Novaković SB, Bogdanović G, et al. Antimicrobial ferrocene containing quinolinones: Synthesis, spectral, electrochemical and structural characterization of 2-ferrocenyl-2,3-dihydroquinolin-4(1H)-one and its 6-chloro and 6-bromo derivatives. Polyhedron. 2012;31:789–95. https://doi.org/10.1016/j.poly.2011.11.006

    Article  CAS  Google Scholar 

  11. Kowalski K, Koceva-Chy A, Szczupak L, Hikisz P, Bernasińska J, Rajnisz A, et al. Ferrocenylvinyl-flavones: synthesis, structure, anticancer and antibacterial activity studies. J Organomet Chem. 2013;741–742:153–61. https://doi.org/10.1016/j.jorganchem.2013.05.009

    Article  CAS  Google Scholar 

  12. Prasath R, Bhavana P, Ng SW, Tiekink ERT. The facile and efficient ultrasound-assisted synthesis of new quinoline-appended ferrocenyl chalcones and their properties. J Organomet Chem. 2013;726:62–70. https://doi.org/10.1016/j.jorganchem.2012.12.022

    Article  CAS  Google Scholar 

  13. Ahmed N, Konduru NK, Owais M. Design, synthesis and antimicrobial activities of novel ferrocenyl and organic chalcone based sulfones and bis-sulfones. Arab J Chem. 2019;12:1879–94. https://doi.org/10.1016/j.arabjc.2014.12.008

    Article  CAS  Google Scholar 

  14. Henry EJ, Smith RB, Collins M, Bird SJ, Gowland P, Cassella JP. Novel ferrocenyl chalcone compounds as possible antimicrobial agents. In: Méndez Vilas A, ed. Antimicrob. Res. Nov. Bioknowledge Educ. Programs. Spain: Formatex Research Centre;; 2017. p. 140–8.

    Google Scholar 

  15. Henry EJ, Bird SJ, Gowland P, Collins M, Cassella JP. Ferrocenyl chalcone derivatives as possible antimicrobial agents. J Antibiot (Tokyo) 2020. 2020;73:299–308. https://doi.org/10.1038/s41429-020-0280-y

    Article  CAS  Google Scholar 

  16. Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am. 2009;23:791–819. https://doi.org/10.1016/j.idc.2009.06.008.Pharmacokinetics

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cyriac JM, James E. Switch over from intravenous to oral therapy: a concise overview. J Pharm Pharmacother. 2014;5:83–8. https://doi.org/10.4103/0976-500X.130042

    Article  Google Scholar 

  18. Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot (Tokyo). 2011;64:625–34. https://doi.org/10.1038/ja.2011.58

    Article  CAS  Google Scholar 

  19. Oxoid. CM0405, Mueller–Hinton broth _ Oxoid-Product Detail. Oxoid Microbiol Prod 2017. http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=CM0405 (accessed May 20, 2017).

  20. Crouch LLE. The synthesis of organometallic chalcones. University of Central Lancashire, 2014.

  21. Stoker HS. General, organic and biological chemistry. 7th ed. Boston: Cengage Learning; 2015.

    Google Scholar 

  22. Hassan AS. The antibacterial activity of dimethyl sulfoxide (DMSO) with and without of some ligand complexes of the transitional metal ions of ethyl coumarin against bacteria isolate from burn and wound infection. J Nat Sci Res. 2014;4:106–11.

    Google Scholar 

  23. Nitin K. Longman science. 1st ed. New Delhi: Dorling Kindersley; 2009.

    Google Scholar 

  24. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard 9th Edition. vol. 32. Pennsylvania: 2012.

  25. EUCAST. EUCAST DISCUSSION DOCUMENT – Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Munich: 2003.

  26. Hildebrand JH, Benesi HA, Mower LM. Solubility of iodine in ethyl alcohol, ethyl ether, mesitylene, p-xylene, 2,2-dimethylbutane, cyclohexane and perfluoro-n-heptane. J Am Chem Soc. 1950;72:1017–20. https://doi.org/10.1021/ja01158a096

    Article  CAS  Google Scholar 

  27. Luo Y, Pan K, Zhong Q. Physical, chemical and biochemical properties of casein hydrolyzed by three proteases: partial characterizations. Food Chem. 2014;155:146–54. https://doi.org/10.1016/j.foodchem.2014.01.048

    Article  CAS  PubMed  Google Scholar 

  28. Gu F, Kim JM, Abbas S, Zhang X, Xia S, Chen Z. Structure and antioxidant activity of high molecular weight Maillard reaction products from casein – glucose. Food Chem. 2010;120:505–11. https://doi.org/10.1016/j.foodchem.2009.10.044

    Article  CAS  Google Scholar 

  29. IUPAC. Chelation. Compend Chem Terminol. 1997. https://doi.org/10.1351/goldbook.C01012.

  30. Chinedu C, Min U. Role of surface charge of hydrolysed bovine caseins in their iron (II) -binding affinity and antioxidative capacity in iron (II) -facilitated β -carotene and glutathione oxidation. J Food Nutr Res. 2017;56:149–54.

    Google Scholar 

  31. Yousefinjad S, Honarasa F, Solhjoo A. On the solubility of ferrocene in nonaqueous solvents. J Chem Eng Data. 2015;10:1–8. https://doi.org/10.1021/acs.jced.5b00768

    Article  CAS  Google Scholar 

  32. Herrmann WA. Synthetic Methods of Organometallic and Inorganic Chemistry. 1st ed. New York, NY: Georg Thieme Verlag; 1997.

    Google Scholar 

  33. Charette MA, Sholkovitz ER. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys Res Lett. 2002;29:1–4. https://doi.org/10.1029/2001GL014512

    Article  CAS  Google Scholar 

  34. Corti A, Muniyasamy S, Vitali M, Imam SH, Chiellini E. Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polym Degrad Stab. 2010;95:1106–14. https://doi.org/10.1016/j.polymdegradstab.2010.02.018

    Article  CAS  Google Scholar 

  35. Rao MR, Kumar KVP, Ravikanth M. Synthesis of boron-dipyrromethene – ferrocene conjugates. J Organomet Chem. 2010;695:863–9. https://doi.org/10.1016/j.jorganchem.2010.01.009

    Article  CAS  Google Scholar 

  36. Duric K, Kovac-besovic E, Niksic H, Sofic E. Antibacterial activity of methanolic extracts, decoction and isolated triterpene products from different parts of Birch, Betula pendula, Roth. J Plant Stud. 2013;2:61–70. https://doi.org/10.5539/jps.v2n2p61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elecia J. Henry.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, E.J., Bennett, C.T., Collins, M. et al. Novel ferrocenyl chalcone derivatives as antibacterial agents: is there a solution to the problem?. Med Chem Res 30, 1284–1293 (2021). https://doi.org/10.1007/s00044-021-02738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02738-1

Keywords

Navigation