Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Machine learning for sperm selection

Abstract

Infertility rates and the number of couples seeking fertility care have increased worldwide over the past few decades. Over 2.5 million cycles of assisted reproductive technologies are being performed globally every year, but the success rate has remained at ~33%. Machine learning, an automated method of data analysis based on patterns and inference, is increasingly being deployed within the health-care sector to improve diagnostics and therapeutics. This technique is already aiding embryo selection in some fertility clinics, and has also been applied in research laboratories to improve sperm analysis and selection. Tremendous opportunities exist for machine learning to advance male fertility treatments. The fundamental challenge of sperm selection — selecting the most promising candidate from 108 gametes — presents a challenge that is uniquely well-suited to the high-throughput capabilities of machine learning algorithms paired with modern data processing capabilities.

Key points

  • Selection of sperm during intracytoplasmic sperm injection is currently not standardized as the WHO guidelines are interpreted subjectively by clinical experts.

  • Machine learning shows promise in improving intracytoplasmic sperm injection by guiding the clinicians to objectively select sperm.

  • Most reported machine learning methods for classification of the sperm head rely on data labelled by clinical experts, despite the variability that exists between them.

  • New studies on single sperm motility and DNA integrity can be used as unbiased quantitative measures for machine learning algorithm-based sperm selection.

  • Considerations of data quality, subjectivity in training data and representativeness of data are crucial to minimize bias.

  • Ethical questions, such as data privacy, control over the decision-making process and data variability, warrant further consideration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Creating a machine learning algorithm for sperm selection.
Fig. 2: Machine learning for sperm selection.
Fig. 3: Different methods of analysing the DNA integrity of a sperm sample.
Fig. 4: Approaches to sperm motility analysis.

Similar content being viewed by others

References

  1. Inhorn, M. C. & Patrizio, P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 21, 411–426 (2015).

    Article  PubMed  Google Scholar 

  2. Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hammoud, A. et al. Decreased sperm motility is associated with air pollution in Salt Lake City. Fertil. Steril. 93, 1875–1879 (2010).

    Article  PubMed  Google Scholar 

  4. Jurewicz, J., Hanke, W., Radwan, M. & Bonde, J. Environmental factors and semen quality. Int. J. Occup. Med. Environ. Health 22, 305–329 (2009).

    Article  PubMed  Google Scholar 

  5. Lafuente, R., García-Blàquez, N., Jacquemin, B. & Checa, M. A. Outdoor air pollution and sperm quality. Fertil. Steril. 106, 880–896 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Jensen, T. K. et al. High dietary intake of saturated fat is associated with reduced semen quality among 701 young Danish men from the general population. Am. J. Clin. Nutr. 97, 411–418 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Afeiche, M. et al. Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men. Hum. Reprod. 28, 2265–2275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hammoud, A. O. Obesity and male reproductive potential. J. Androl. 27, 619–626 (2006).

    Article  PubMed  Google Scholar 

  9. Du Plessis, S. S., Cabler, S., McAlister, D. A., Sabanegh, E. & Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 7, 153–161 (2010).

    Article  PubMed  Google Scholar 

  10. Mascarenhas, M. N., Flaxman, S. R., Boerma, T., Vanderpoel, S. & Stevens, G. A. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 9, e1001356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boivin, J., Bunting, L., Collins, J. A. & Nygren, K. G. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum. Reprod. 22, 1506–1512 (2007).

    Article  PubMed  Google Scholar 

  12. Sear, R., Lawson, D. W., Kaplan, H. & Shenk, M. K. Understanding variation in human fertility: what can we learn from evolutionary demography? Phil. Trans. R. Soc. B 371, 20150144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fauser, B. C. Towards the global coverage of a unified registry of IVF outcomes. Reprod. Biomed. Online 38, 133–137 (2019).

    Article  PubMed  Google Scholar 

  14. Nosrati, R. et al. Microfluidics for sperm analysis and selection. Nat. Rev. Urol. 14, 707–730 (2017).

    Article  PubMed  Google Scholar 

  15. Wilkinson, J. et al. Reproductive medicine: still more ART than science? BJOG 126, 138–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Oseguera-López, I., Ruiz-Díaz, S., Ramos-Ibeas, P. & Pérez-Cerezales, S. Novel techniques of sperm selection for improving IVF and ICSI outcomes. Front. Cell Dev. Biol. 7, 298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Swain, J. E. & Pool, T. B. ART failure: oocyte contributions to unsuccessful fertilization. Hum. Reprod. Update 14, 431–446 (2008).

    Article  PubMed  Google Scholar 

  18. Nasr-Esfahani, M. H., Deemeh, M. R. & Tavalaee, M. New era in sperm selection for ICSI. Int. J. Androl. 35, 475–484 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Bungum, M. & Oleszczuk, K. in A Clinician’s Guide to Sperm DNA and Chromatin Damage (eds Zini, A. & Agarwal, A.) 393–410 (Springer, 2018).

  20. Claassens, O. E., Menkveld, R. & Harrison, K. L. Evaluation of three substitutes for Percoll in sperm isolation by density gradient centrifugation. Hum. Reprod. 13, 3139–3143 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Rappa, K. L. et al. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol. Adv. 34, 578–587 (2015).

    Article  Google Scholar 

  22. Younglai, E. V., Holt, D., Brown, P., Jurisicova, A. & Casper, R. F. Sperm swim-up techniques and DNA fragmentation. Hum. Reprod. 16, 1950–1953 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Jayaraman, V., Upadhya, D., Narayan, P. K. & Adiga, S. K. Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. J. Assist. Reprod. Genet. 29, 557–563 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yamanaka, M. et al. Combination of density gradient centrifugation and swim-up methods effectively decreases morphologically abnormal sperms. J. Reprod. Dev. 62, 599–606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Repping, S., van Weert, J.-M., Mol, B. W., de Vries, J. W. & van der Veen, F. Use of the total motile sperm count to predict total fertilization failure in in vitro fertilization. Fertil. Steril. 78, 22–28 (2002).

    Article  PubMed  Google Scholar 

  26. Cooper, T. G. et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 16, 231–245 (2010).

    Article  PubMed  Google Scholar 

  27. World Health Organization. WHO laboratory manual for the examination and processing of human semen (WHO, 2010).

  28. Barroso, G. et al. Intra- and inter-laboratory variability in the assessment of sperm morphology by strict criteria: impact of semen preparation, staining techniques and manual versus computerized analysis. Hum. Reprod. 14, 2036–2040 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Dominguez, E. M., Moreno-Irusta, A., Guidobaldi, H. A., Tribulo, H. & Giojalas, L. C. Improved bovine in vitro embryo production with sexed and unsexed sperm selected by chemotaxis. Theriogenology 122, 1–8 (2018).

    Article  PubMed  Google Scholar 

  30. Bahat, A. et al. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat. Med. 9, 149–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17 (2014).

    Article  PubMed  Google Scholar 

  32. Collins, J. A., Barnhart, K. T. & Schlegel, P. N. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil. Steril. 89, 823–831 (2008).

    Article  PubMed  Google Scholar 

  33. Cipolla, R, Battiato, S. & Farinella, G. M. (eds) Machine Learning for Computer Vision Vol. 411 (Springer, 2013).

  34. Haines, N., Southward, M. W., Cheavens, J. S., Beauchaine, T. & Ahn, W.-Y. Using computer-vision and machine learning to automate facial coding of positive and negative affect intensity. PLoS ONE 14, e0211735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diehl, P. U. & Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. JAMA 319, 1317 (2018).

    Article  PubMed  Google Scholar 

  37. Sajda, P. Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng. 8, 537–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Banaee, H., Ahmed, M. & Loutfi, A. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13, 17472–17500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldenberg, S. L., Nir, G. & Salcudean, S. E. A new era: artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 16, 391–403 (2019).

    Article  PubMed  Google Scholar 

  40. Im, H. et al. Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning. Nat. Biomed. Eng. 2, 666–674 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lo, Y.-C., Rensi, S. E., Torng, W. & Altman, R. B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 23, 1538–1546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, Y. & Zhang, M. Neural network methods for natural language processing. Comput. Linguist. 44, 193–195 (2018).

    Article  Google Scholar 

  44. Hirschberg, J. & Manning, C. D. Advances in natural language processing. Science 349, 261–266 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, R. et al. Artificial intelligence in reproductive medicine. Reproduction 158, R139–R154 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chu, K. Y. et al. Artificial intelligence in reproductive urology. Curr. Urol. Rep. 20, 52 (2019).

    Article  PubMed  Google Scholar 

  47. Thirumalaraju, P. et al. Deep learning-enabled blastocyst prediction system for cleavage stage embryo selection. Fertil. Steril. 111, e29 (2019).

    Article  Google Scholar 

  48. Khosravi, P. et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2, 21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Boulet, S. L. et al. Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313, 255–263 (2015).

    Article  PubMed  Google Scholar 

  50. Dyer, S. et al. International committee for monitoring assisted reproductive technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum. Reprod. 31, 1588–1609 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Esteves, S. C., Roque, M., Bedoschi, G., Haahr, T. & Humaidan, P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat. Rev. Urol. 15, 535–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. McCallum, C. et al. Deep learning-based selection of human sperm with high DNA integrity. Commun. Biol. 2, 250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Menkveld, R., Holleboom, C. A. G. & Rhemrev, J. P. T. Measurement and significance of sperm morphology. Asian J. Androl. 13, 59–68 (2011).

    Article  PubMed  Google Scholar 

  54. Kruger, T. F. et al. New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology 30, 248–251 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Gatimel, N., Moreau, J., Parinaud, J. & Léandri, R. D. Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017. Andrology 5, 845–862 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Brito, L. F. C. A multilaboratory study on the variability of bovine semen analysis. Theriogenology 85, 254–266 (2016).

    Article  PubMed  Google Scholar 

  57. Eustache, F. & Auger, J. Inter-individual variability in the morphological assessment of human sperm: effect of the level of experience and the use of standard methods. Hum. Reprod. 18, 1018–1022 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Singh, S., Sharma, S., Jain, M. & Chauhan, R. Importance of Papanicolaou Staining for Sperm Morphologic Analysis. Am. J. Clin. Pathol. 136, 247–251 (2011).

    Article  PubMed  Google Scholar 

  59. Schirren, C., Eckhardt, U., Jachczik, R. & Carstensen, C. A. Morphological differentiation of human spermatozoa with testsimplets® slides. Andrologia 9, 191–192 (2009).

    Article  Google Scholar 

  60. Kruger, T. F. et al. A quick, reliable staining technique for human sperm morphology. Arch. Androl. 18, 275–277 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. van der Horst, G. & Maree, L. SpermBlue®: A new universal stain for human and animal sperm which is also amenable to automated sperm morphology analysis. Biotech. Histochem. 84, 299–308 (2010).

    Article  Google Scholar 

  62. Henkel, R. et al. Comparison of three staining methods for the morphological evaluation of human spermatozoa. Fertil. Steril. 89, 449–455 (2008).

    Article  PubMed  Google Scholar 

  63. Maree, L., du Plessis, S. S., Menkveld, R. & van der Horst, G. Morphometric dimensions of the human sperm head depend on the staining method used. Hum. Reprod. 25, 1369–1382 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Natali, I. et al. Scoring human sperm morphology using Testsimplets and Diff-Quik slides. Fertil. Steril. 99, 1227–1232.e2 (2013).

    Article  PubMed  Google Scholar 

  65. Czubaszek, M., Andraszek, K., Banaszewska, D. & Walczak-Jędrzejowska, R. The effect of the staining technique on morphological and morphometric parameters of boar sperm. PLoS ONE 14, e0214243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kruger, T. F. et al. A new computerized method of reading sperm morphology (strict criteria) is as efficient as technician reading. Fertil. Steril. 59, 202–209 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Kruger, T. F. et al. A prospective study on the predictive value of normal sperm morphology as evaluated by computer (IVOS**Hamilton Thome Research Version 2.1 Dimension Program, Beverly, Massachusetts.). Fertil. Steril. 66, 285–291 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Coetzee, K., de Villiers, A., Kruger, T. F. & Lombard, C. J. Clinical value of using an automated sperm morphology analyzer (IVOS). Fertil. Steril. 71, 222–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Coetzee, K., Kruger, T. F. & Lombard, C. J. Repeatability and variance analysis on multiple computer-assisted (IVOS*) sperm morphology readings. Andrologia 31, 163–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Menkveld, R. et al. Effects of different staining and washing procedures on the results of human sperm morphology evaluation by manual and computerised methods. Andrologia 29, 1–7 (2009).

    Article  Google Scholar 

  71. Coetzee, K., Kruger, T. F., Vandendael, A., Villiers, A. & Lombard, C. J. Comparison of two staining and evaluation methods used for computerized human sperm morphology evaluations. Andrologia 29, 133–135 (2009).

    Article  Google Scholar 

  72. Tseng, K.-K. et al. Computer-assisted system with multiple feature fused support vector machine for sperm morphology diagnosis. Biomed. Res. Int. 2013, 1–13 (2013).

    Article  Google Scholar 

  73. Auger, J. et al. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum. Reprod. 16, 2710–2717 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Shaker, F., Monadjemi, S. A., Alirezaie, J. & Naghsh-Nilchi, A. R. A dictionary learning approach for human sperm heads classification. Comput. Biol. Med. 91, 181–190 (2017).

    Article  PubMed  Google Scholar 

  75. Chang, V., Garcia, A., Hitschfeld, N. & Härtel, S. Gold-standard for computer-assisted morphological sperm analysis. Comput. Biol. Med. 83, 143–150 (2017).

    Article  PubMed  Google Scholar 

  76. Chang, V., Heutte, L., Petitjean, C., Härtel, S. & Hitschfeld, N. Automatic classification of human sperm head morphology. Comput. Biol. Med. 84, 205–216 (2017).

    Article  PubMed  Google Scholar 

  77. Van Raemdonck, L. E. M. et al. An algorithm for morphological classification of motile human sperm (IEEE, 2015).

  78. Javadi, S. & Mirroshandel, S. A. A novel deep learning method for automatic assessment of human sperm images. Comput. Biol. Med. 109, 182–194 (2019).

    Article  PubMed  Google Scholar 

  79. Riordon, J., McCallum, C. & Sinton, D. Deep learning for the classification of human sperm. Comput. Biol. Med. 111, 103342 (2019).

    Article  PubMed  Google Scholar 

  80. Ghasemian, F., Mirroshandel, S. A., Monji-Azad, S., Azarnia, M. & Zahiri, Z. An efficient method for automatic morphological abnormality detection from human sperm images. Comput. Methods Prog. Biomed. 122, 409–420 (2015).

    Article  Google Scholar 

  81. Kanakasabapathy, M. K. et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl Med. 9, 1–14 (2017).

    Article  Google Scholar 

  82. Thirumalaraju, P. et al. Human sperm morphology analysis using smartphone microscopy and deep learning. Fertil. Steril. 112, e41 (2019).

    Article  Google Scholar 

  83. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Eisenbach, M. & Giojalas, L. C. Sperm guidance in mammals — an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Grunewald, S. & Paasch, U. in Male Infertility (eds Parekattil, S. & Agarwal, A.) 423–430 (Springer, 2012).

  86. Sakkas, D., Ramalingam, M., Garrido, N. & Barratt, C. L. R. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum. Reprod. 21, 711–726 (2018).

    Google Scholar 

  87. Zini, A., Bielecki, R., Phang, D. & Zenzes, M. T. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil. Steril. 75, 674–677 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Y. et al. Prediction of DNA integrity from morphological parameters using a single-sperm DNA fragmentation index assay. Adv. Sci. 6, 1900712 (2019).

    Article  Google Scholar 

  89. Evenson, D. P. The sperm chromatin structure assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim. Reprod. Sci. 169, 56–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Evenson, D. P., Larson, K. L. & Jost, L. K. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 23, 25–43 (2002).

    Article  PubMed  Google Scholar 

  91. Bungum, M. et al. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum. Reprod. 19, 1401–1408 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Carell, D. & Kenneth, K. I. Spermatogenesis: Methods and Protocols (Humana, 2013).

  93. Fernández, J. L. et al. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J. Androl. 24, 59–66 (2003).

    PubMed  Google Scholar 

  94. Muriel, L. et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil. Steril. 85, 371–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Sun, T. C. et al. Sperm DNA fragmentation index, as measured by sperm chromatin dispersion, might not predict assisted reproductive outcome. Taiwan. J. Obstet. Gynecol. 57, 493–498 (2018).

    Article  PubMed  Google Scholar 

  96. Simon, L. et al. damage output parameters measured by the alkaline Comet assay and their importance. Andrologia 49, 1–12 (2017).

    Article  Google Scholar 

  97. Nasr-Esfahani, M. H. et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod. Biomed. Online 11, 198–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Ribas-Maynou, J. et al. Alkaline and neutral Comet assay profiles of sperm DNA damage in clinical groups. Hum. Reprod. 27, 652–658 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Ribas-Maynou, J. et al. Double stranded sperm DNA breaks, measured by comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS ONE 7, e44679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Langie, S. A. S., Azqueta, A. & Collins, A. R. The comet assay: past, present, and future. Front. Genet. 6, 266 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Garolla, A. et al. High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod. Biomed. Online 17, 610–616 (2008).

    Article  PubMed  Google Scholar 

  102. Utsuno, H., Oka, K., Yamamoto, A. & Shiozawa, T. Evaluation of sperm head shape at high magnification revealed correlation of sperm DNA fragmentation with aberrant head ellipticity and angularity. Fertil. Steril. 99, 1573–1580.e1 (2013).

    Article  PubMed  Google Scholar 

  103. Nixon, B. et al. The role of the molecular chaperone heat shock protein A2 (HSPA2) in regulating human sperm-egg recognition. Asian J. Androl. 17, 568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Inoue, N., Hagihara, Y., Wright, D., Suzuki, T. & Wada, I. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm–egg fusion in mice. Nat. Commun. 6, 8858 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Hiramoto, Y. & Baba, S. A. A quantitative analysis of flagellar movement in echinoderm spermatozoa. J. Exp. Biol. 76, 85–104 (1978).

    Article  Google Scholar 

  106. Saggiorato, G. et al. Human sperm steer with second harmonics of the flagellar beat. Nat. Commun. 8, 1415 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hansen, J., Rassmann, S., Jikeli, J. & Wachten, D. SpermQ–A simple analysis software to comprehensively study flagellar beating and sperm steering. Cells 8, 10 (2018).

    Article  PubMed Central  Google Scholar 

  108. Gallagher, M. T., Cupples, G., Ooi, E. H., Kirkman-Brown, J. C. & Smith, D. J. Rapid sperm capture: high-throughput flagellar waveform analysis. Hum. Reprod. 34, 1173–1185 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Di Caprio, G. et al. Quantitative label-free animal sperm imaging by means of digital holographic microscopy. IEEE J. Sel. Top. Quantum Electron. 16, 833–840 (2010).

    Article  Google Scholar 

  110. Di Caprio, G. et al. 4D tracking of clinical seminal samples for quantitative characterization of motility parameters. Biomed. Opt. Express 5, 690 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Su, T.-W., Xue, L. & Ozcan, A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl Acad. Sci. USA 109, 16018–16022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Daloglu, M. U. et al. Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. Light Sci. Appl. 7, 17121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Daloglu, M. U. et al. 3D imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating. Sci. Rep. 8, 15650 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dubey, V. et al. Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition. Sci. Rep. 9, 3564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. de Wagenaar, B. et al. Microfluidic single sperm entrapment and analysis. Lab. Chip 15, 1294–1301 (2015).

    Article  PubMed  Google Scholar 

  116. de Wagenaar, B. et al. Spermometer: electrical characterization of single boar sperm motility. Fertil. Steril. 106, 773–780.e6 (2016).

    Article  PubMed  Google Scholar 

  117. You, J. B. et al. Live sperm trap microarray for high throughput imaging and analysis. Lab. Chip 19, 815–824 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Goodson, S. G. et al. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns†. Biol. Reprod. 97, 698–708 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Goodson, S. G., Zhang, Z., Tsuruta, J. K., Wang, W. & O’Brien, D. A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model1. Biol. Reprod. 84, 1207–1215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hicks, S. A. et al. Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Sci. Rep. 9, 16770 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Somasundaram, D. & Nirmala, M. Faster region convolutional neural network and semen tracking algorithm for sperm analysis. Comput. Methods Prog. Biomed. 200, 105918 (2021).

    Article  Google Scholar 

  122. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. Proc. Int. Conf. Neural Inform. Process. Syst. 2, 3104–3112 (2014).

    Google Scholar 

  123. Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. Proc. Conf. Empir. Methods Nat. Lang. Process. 28, 1724–1734 (2014).

    Google Scholar 

  124. Ng, J. Y. H. et al. Beyond short snippets: deep networks for video classification (IEEE, 2015).

  125. Yao, L. et al. Describing videos by exploiting temporal structure (IEEE, 2015).

  126. Donahue, J. et al. Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 39, 677–691 (2017).

    Article  PubMed  Google Scholar 

  127. Kimmel, J., Brack, A. & Marshall, W. Deep convolutional and recurrent neural networks for cell motility discrimination and prediction. IEEE/ACM Trans. Comput. Biol. Bioinforma. 18, 562–574 (2019).

    Article  Google Scholar 

  128. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhou, X. et al. Hybrid generative-discriminative learning for online tracking of sperm cell. Neurocomputing 208, 218–224 (2016).

    Article  Google Scholar 

  130. Karahan, Ş. et al. How image degradations affect deep CNN-based face recognition? (IEEE, 2016).

  131. Dodge, S. & Karam, L. Understanding how image quality affects deep neural networks (IEEE, 2016).

  132. Teixeira, D. M. et al. Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst. Rev. 7, CD010167 (2013).

    Google Scholar 

  133. Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dai, C. et al. Automated non-invasive measurement of single sperm’s motility and morphology. IEEE Trans. Med. Imaging 37, 2257–2265 (2018).

    Article  PubMed  Google Scholar 

  135. Wainberg, M., Merico, D., Delong, A. & Frey, B. J. Deep learning in biomedicine. Nat. Biotechnol. 36, 829–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Intasqui, P., Agarwal, A., Sharma, R., Samanta, L. & Bertolla, R. P. Towards the identification of reliable sperm biomarkers for male infertility: a sperm proteomic approach. Andrologia 50, e12919 (2018).

    Article  Google Scholar 

  137. Gijsberts, C. M. et al. Race/ethnic differences in the associations of the Framingham risk factors with carotid IMT and cardiovascular events. PLoS ONE 10, e0132321 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. Proc. Mach. Learn. Res. 81, 77–91 (2018).

    Google Scholar 

  139. Balki, I. et al. Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can. Assoc. Radiol. J. 70, 344–353 (2019).

    Article  PubMed  Google Scholar 

  140. Vayena, E., Blasimme, A. & Cohen, I. G. Machine learning in medicine: addressing ethical challenges. PLoS Med. 15, e1002689 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Froomkin, A. M., Kerr I. & Pineau, J. in Called to Holiness 167–170 (Catholic Univ. America Press, 2017).

  142. Price, W. N., Gerke, S. & Cohen, I. G. Potential liability for physicians using artificial intelligence. JAMA 322, 1765 (2019).

    Article  PubMed  Google Scholar 

  143. Reddy, S., Allan, S., Coghlan, S. & Cooper, P. A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 27, 491–497 (2020).

    Article  PubMed  Google Scholar 

  144. Kuner, C., Svantesson, D. J. B., Cate, F. H., Lynskey, O. & Millard, C. Machine learning with personal data: is data protection law smart enough to meet the challenge? Int. Data Priv. Law 7, 1–2 (2017).

    Article  Google Scholar 

  145. Richens, J. G., Lee, C. M. & Johri, S. Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 11, 3923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Myszczynska, M. A. et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440–456 (2020).

    Article  PubMed  Google Scholar 

  147. Goecks, J., Jalili, V., Heiser, L. M. & Gray, J. W. How machine learning will transform biomedicine. Cell 181, 92–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Willemink, M. J. et al. Preparing medical imaging data for machine learning. Radiology 295, 4–15 (2020).

    Article  PubMed  Google Scholar 

  149. Alexander, A., Jiang, A., Ferreira, C. & Zurkiya, D. An intelligent future for medical imaging: a market outlook on artificial intelligence for medical imaging. J. Am. Coll. Radiol. 17, 165–170 (2020).

    Article  PubMed  Google Scholar 

  150. VerMilyea, M. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 35, 770–784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nayot, D., Bharti, R. M., Meriano, J. & Krivoi, A. Methods and systems for determining quality of an oocyte. US Patent 10,552,957 B2 (2020).

  152. Char, D. S., Shah, N. H. & Magnus, D. Implementing machine learning in health care — addressing ethical challenges. N. Engl. J. Med. 378, 981–983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wijesekera, T. P., Sanders, L. & Windish, D. M. Reflections on diagnosis and diagnostic errors: a survey of internal medicine resident and attending physicians. J. Gen. Intern. Med. 35, 614–615 (2020).

    Article  PubMed  Google Scholar 

  154. Currie, G., Hawk, K. E., Rohren, E., Vial, A. & Klein, R. Machine learning and deep learning in medical imaging: intelligent imaging. J. Med. Imaging Radiat. Sci. 50, 477–487 (2019).

    Article  PubMed  Google Scholar 

  155. Giger, M. L. Machine learning in medical imaging. J. Am. Coll. Radiol. 15, 512–520 (2018).

    Article  PubMed  Google Scholar 

  156. Senders, J. T. et al. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 160, 29–38 (2018).

    Article  PubMed  Google Scholar 

  157. Staartjes, V. E. et al. Machine learning in neurosurgery: a global survey. Acta Neurochir. 162, 3081–3091 (2020).

    Article  PubMed  Google Scholar 

  158. Pennig, L. et al. Primary central nervous system lymphoma: clinical evaluation of automated segmentation on multiparametric MRI using deep learning. J. Magn. Reson. Imaging 53, 259–268 (2021).

    Article  PubMed  Google Scholar 

  159. Schelb, P. et al. Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment. Radiology 293, 607–617 (2019).

    Article  PubMed  Google Scholar 

  160. Azencott, C.-A. Machine learning and genomics: precision medicine versus patient privacy. Phil. Trans. R. Soc. A 376, 20170350 (2018).

    Article  PubMed  Google Scholar 

  161. Tran, D., Cooke, S., Illingworth, P. J. & Gardner, D. K. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 34, 1011–1018 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Horvitz, E. & Mulligan, D. Data, privacy, and the greater good. Science 349, 253–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Dardikman-Yoffe, G., Mirsky, S. K., Barnea, I. & Shaked, N. T. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. Sci. Adv. 6, eaay7619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. 29, 1153–1160 (1981).

    Article  Google Scholar 

  165. Duchon, C. E. Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18, 1016–1022 (1979).

    Article  Google Scholar 

  166. Qinlan, X., Hong, C. & Huimin, C. Improved example-based single-image super-resolution (IEEE, 2010).

  167. Sert, E., Özyurt, F. & Doğantekin, A. A new approach for brain tumor diagnosis system: single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Med. Hypotheses 133, 109413 (2019).

    Article  PubMed  Google Scholar 

  168. Ravì, D., Szczotka, A. B., Shakir, D. I., Pereira, S. P. & Vercauteren, T. Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction. Int. J. Comput. Assist. Radiol. Surg. 13, 917–924 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shaker, F. Human sperm head morphology data set (HuSHeM). Mendeley Data https://doi.org/10.17632/tt3yj2pf38.1 (2017).

  170. Agarwal, A., Gupta, S. & Sharma, R. (eds) in Andrological Evaluation of Male Infertility 181–203 (Springer, 2016).

  171. Adiga, S. K. & Kalthur, G. in Male Infertility (Gunasekaran, K. & Pandiyan, N.) 155–165 (Springer, 2017).

  172. Tandara, M. et al. Sperm DNA integrity testing: big halo is a good predictor of embryo quality and pregnancy after conventional IVF. Andrology 2, 678–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Cortés-Gutiérrez, E. I., Dávila-Rodríguez, M. I. & López-Fernández, C. in A Clinician’s Guide to Sperm DNA and Chromatin Damage (eds Zini, A. & Agarwal, A.) 119–135 (Springer, 2018).

  174. Bukatin, A., Kukhtevich, I., Stoop, N., Dunkel, J. & Kantsler, V. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc. Natl Acad. Sci. USA 112, 15904–15909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Frimat, J.-P. et al. Make it spin: individual trapping of sperm for analysis and recovery using micro-contact printing. Lab. Chip 14, 2635 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Mathews, S. C. et al. Digital health: a path to validation. NPJ Digit. Med. 2, 38 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).

    Article  PubMed  Google Scholar 

  179. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Riordon, J., Sovilj, D., Sanner, S., Sinton, D. & Young, E. W. K. Deep learning with microfluidics for biotechnology. Trends Biotechnol. 37, 310–324 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Webb, S. Deep learning for biology. Nature 554, 555–557 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    Article  Google Scholar 

  183. Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).

    Article  PubMed  Google Scholar 

  184. Yu, Y., Si, X., Hu, C. & Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1235–1270 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Collaborative Health Research Project funded by the Canadian Institute of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC). R.N. acknowledges support from the Australian Research Council Discovery Program (DP190100343). The authors also gratefully acknowledge the Canada Research Chairs Program (DS). The authors thank K. Jarvi, T. Hannam and A. Lagunov for insightful discussions on the potential for machine learning in clinical applications.

Review criteria

Articles for this Review were selected based on the relevance to the topics discussed in the manuscript, namely sperm morphology assessment, DNA integrity, sperm motility and machine learning. Articles of interest were those describing, evaluating and discussing sperm morphology and DNA integrity assessment techniques, as well as those that propose the use of machine learning for sperm classification. As most current sperm morphology and DNA assessment approaches are based on techniques developed several decades ago, reports with publication from 1978 to 2020 have been referenced in the Review. In the ethics section, we have referenced specialized perspectives and review papers discussing the ethical issues of artificial intelligence and machine learning written by experts in legal, medical and technological sectors.

Author information

Authors and Affiliations

Authors

Contributions

J.B.Y., C.M., and Y.W. researched data for the manuscript, J.B.Y., J.R. and D.S. made substantial contributions to discussions of content. All authors wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to David Sinton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J.B., McCallum, C., Wang, Y. et al. Machine learning for sperm selection. Nat Rev Urol 18, 387–403 (2021). https://doi.org/10.1038/s41585-021-00465-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00465-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research