Skip to main content
Log in

24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) pollution has attracted global concern. In the present study, the biochemical mechanisms underlying the amelioration of 24-epibrassinolide (eBL) and abscisic acid (ABA) on Cd tolerance of roots, stems, and leaves in mung bean seedlings were comparatively analyzed. Foliar application of eBL markedly ameliorated the growth of mung bean seedling exposed to 100 μM Cd. eBL alone had no significant effects on the activities of antioxidative enzymes and the contents of glutathione (GSH) and polyphenols in the three organs whereas significantly increased the root, stem, and leaf proline contents on average by 54.9%, 39.9%, and 94.4%, respectively, and leaf malondialdehyde (MDA) content on average by 69.0% compared with the controls. When the plants were exposed to Cd, eBL significantly reversed the Cd-increased root ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities, root polyphenol, proline, and GSH levels, leaf chlorophyll contents, and MDA levels in the three organs. eBL significantly restored the Cd-decreased leaf catalase (CAT) activity and leaf polyphenol levels. These results indicated that eBL played roles in maintaining cellular redox homeostasis and evidently alleviated Cd-caused membrane lipid peroxidation via controlling the activity of antioxidative systems. eBL mediated the differential responses of cellular biochemical processes in the three organs to Cd exposure. Furthermore, a comparative analysis revealed that, under Cd stress, the effects of eBL on the biochemical processes were very similar to those of ABA, suggesting that ABA and eBL improve plant Cd tolerance via some common downstream pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013) Role of brassinosteroids in alleviation of phenanthrene cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  CAS  Google Scholar 

  • Ahammed GJ, Li X, Liu A, Chen S (2020) Brassinosteroids in plant tolerance to abiotic stress. J Plant Growth Regul 39:1451–1464

    Article  CAS  Google Scholar 

  • Ahmad P, Abdel Latef AA, Abd Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513. https://doi.org/10.3389/fpls.2016.00513

    Article  Google Scholar 

  • Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M (2018) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. J Plant Growth Regul 37:309–322

    Article  CAS  Google Scholar 

  • Alharbi OML, Basheer AA, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Liq 263:442–453

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S (2008) A role for brassinosteroid in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030

    Article  CAS  Google Scholar 

  • Anuradha S, RAO SSR (2009) Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica: Inter J Photosyn Res 47:317–320

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulagaris. Plant Physiol 4:1–15

    Article  Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010) 24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol Mol Biol Plants 16:285–293

    Article  CAS  Google Scholar 

  • Asgher M, Khan MR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  Google Scholar 

  • Bączek-Kwinta R, Antonkiewicz J, Łopata-Stasiak A, Kępka W (2019a) Smoke compounds aggravate stress inflicted on Brassica seedlings by unfavourable soil conditions. Photosynthetica 57:1–8

    Article  CAS  Google Scholar 

  • Bączek-Kwinta R, Juzoń K, Borek M, Antonkiewicz J (2019b) Photosynthetic response of cabbage in cadmium-spiked soil. Photosynthetica 57:731–739

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  Google Scholar 

  • Bates LS, Walden RT, Tearse ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bukhari SAH, Wang R, Wang W, Ahmed IM, Zheng W, Cao F (2016) Genotype-dependent effect of exogenous 24-epibrassinolide on chromium-induced changes in ultrastructure and physicochemical traits in tobacco seedling. Environ Sci Pollut Res 23:18229–18238

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    Article  CAS  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  CAS  Google Scholar 

  • Dalyana E, Yüzbaşıoğlua E, Akpınarb I (2018) Effect of 24-Epibrassinolide on antioxidative defence system against lead-induced oxidative stress in the roots of Brassica juncea L. seedlings. J Plant Physiol 65:570–578

    Google Scholar 

  • Fang P, Yan M, Chi C, Wang M, Zhou YH, Zhou J, Shi K, Xia X, Foyer CH, Yu J (2019) Brassinosteroids act as a positive regulator of photoprotection in response to chilling stress. Plant Physiol 180:2061–2076

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  CAS  Google Scholar 

  • Fariduddin Q, Ahmed M, A. Mir B, Yusuf M, Khan TA (2015) 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environ Sci Pollut Res 22:11349–11359

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  Google Scholar 

  • Guo JK, Zhou R, Ren XH, Jia HL, Hua L, Xu HH, Lv X, Zhao J, Wei T (2018) Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants. Ecotoxicol Environ Saf 157:491–496

    Article  CAS  Google Scholar 

  • Hamed SM, Zinta G, Klöck G, Asard H, Selim S, AbdElgawad H (2017) Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicol Environ Saf 140:256–263

    Article  CAS  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Abd-Allah EF, Alqarawi AA, Ahmad P (2019) Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ Exp Bot 161:180–192

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23:249–268

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Hayat Q, Ahmad A (2010) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239:3–14

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  Google Scholar 

  • Hédiji H, Djebali W, Belkadhi A, Cabasson C, Moing A, Rolin D, Brouquisse R, Gallusci P, Chaïbi W (2015) Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: consequences on fruit production. S Afr J Bot 97:176–181

    Article  CAS  Google Scholar 

  • Howell WM, Keller GE, Kirkpatrick JD, Jenkins RL, Hunsinger RN, Mclaughlin EW (2007) Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. GMR Genet Mol Res 6:50–58

    CAS  Google Scholar 

  • Hussain A, Nazir F, Fariduddin Q (2019) 24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. Physiol Mol Biol Plants 25:905–919

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Iqbal N, Nazar RA, Khan N (2016) Evaluating the importance of proline in cadmium tolerance and its interaction with phytohormones. In: Iqbal N, Nazar RA (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi, pp 129–153

    Chapter  Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133

    Article  CAS  Google Scholar 

  • Ismaiel MMS, Said AA (2018) Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: role of antioxidants and biochemical contents in metal detoxification. Ecotoxicol Environ Saf 16:704–712

    Article  CAS  Google Scholar 

  • Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18:146–164

    Article  CAS  Google Scholar 

  • Jan S, Noman A, Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) 24-Epibrassinolide alleviates the injurious effects of Cr(VI) toxicity in tomato plants: insights into growth, physio-biochemical attributes, antioxidant activity and regulation of ascorbate–glutathione and glyoxalase cycles. J Plant Growth Regul 39:1587–1604

    Article  CAS  Google Scholar 

  • Kapoor D, Rattan A, Gautam V, Bhardwaj R (2016) Alleviation of cadmium and mercury stress by supplementation of steroid hormone to Raphanus sativus seedlings. Proc Nat Academy Sci India Section B Biol Sci 86:661–666

    Article  CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601:1591–1605

    Article  CAS  Google Scholar 

  • Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012) Antioxidant and photosynthetic responses in plants under boron toxicity: a review. America J Agric Biol Sci 7:255–270

    Article  CAS  Google Scholar 

  • Leng Y, Li Y, Ma YH, He LF, Li SW (2020) Abscisic acid modulates differential physiological and biochemical responses of roots, stems, and leaves in mung bean seedlings to cadmium stress. Environ Sci Pollut Res 28:6030–6043

    Article  CAS  Google Scholar 

  • Li L (2009) The determination of malondialdehyde content. In: Li L, Li NH (eds) Experimental guidance on plant physiology. Science Press, Beijing, pp 80–82

    Google Scholar 

  • Li SW, Leng Y, Feng L, Zeng XY (2014) Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.)Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res 21:525–537

    Article  CAS  Google Scholar 

  • Li SW, Li Y, Leng Y, Zeng XY, Ma YH (2019) Nitric oxide donor improves adventitious rooting in mung bean hypocotyl cuttings exposed to cadmium and osmotic stresses. Environ Exp Bot 164:114–123

    Article  CAS  Google Scholar 

  • Liu YJ, Jiang HF, Zhao ZG, An LZ (2011) Abscisic acid is involved in brassinosteroids-induced chilling tolerance in the suspension cultured cells from Chorispora bungeana. J Plant Physiol 168:853–862

    Article  CAS  Google Scholar 

  • Manquián-Cerda K, Cruces E, Escudey M, Zúriiga G, Calderon R (2018) Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicol Environ Saf 150:320–326

    Article  CAS  Google Scholar 

  • Márquez-Garca B, Horemans N, Torronteras R, Córdoba F (2012) Glutathione depletion in healthy cadmium-exposed Erica andevalensis. Environ Exp Bot 75:159–166

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Peng RN, Sun WY, Jin XX, Yu LJ, Chen C, Yue ZH, Dong YL (2020) Analysis of 24-epibrassinolide created an enhancement tolerance on Cd toxicity in Solanum nigrum L. Environ Sci Pollut Res 27:16784–16797

    Article  CAS  Google Scholar 

  • Piotto FA, Carvalho MEA, Souza LA, Rabêlo FHS, Franco MR, Batagin-Piotto KD, Azevedo RA (2018) Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. Environ Sci Pollut Res 25:27535–27544

    Article  CAS  Google Scholar 

  • Pirie A, Mullins MG (1976) Changes in anthocyanin and phenols content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol 58:468–472

    Article  CAS  Google Scholar 

  • Radic S, Babic M, Skobic D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73:336–342

    Article  CAS  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    Article  CAS  Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629. https://doi.org/10.3389/fpls.2016.00629

    Article  Google Scholar 

  • Ramakrishna B, Rao SSR (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252:665–677

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Ribeiro AT, de Oliveira VP, de Oliveira Barros Junior U, da Silva BRS, Batista BL, da Silva Lobato AK (2020) 24-Epibrassinolide mitigates nickel toxicity in young Eucalyptus urophylla S.T. Blake plants: nutritional, physiological, biochemical, anatomical and morphological responses. Ann Forest Sci 77:5–24

    Article  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two Indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847

    Article  CAS  Google Scholar 

  • Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaïbi W, Djebali W (2013) Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr J Bot 85:32–38

    Article  CAS  Google Scholar 

  • Santos LR, Batista BL, Lobato AKS (2018) Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica 56:591–605

    Article  CAS  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  Google Scholar 

  • Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 3:861–880

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 217037:1–26. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng BS (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24. https://doi.org/10.3390/molecules24132452

  • Shu S, Tang YY, Yuan YH, Sun J, Zhong M, Guo SR (2016) The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Biochem 107:344–353

    Article  CAS  Google Scholar 

  • Silva JRR, Fernandes AR, Silva JML, Santos CRC, Lobato AKS (2018) Tolerance mechanisms in Cassia alata exposed to cadmium toxicity– potential use for phytoremediation. Photosynthetica 56:495–504

    Article  CAS  Google Scholar 

  • Singh S, Prasad SM (2017) Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings under cadmium stress: photosynthesis and nitrogen metabolism. Plant Growth Regul 82:161–173

    Article  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  CAS  Google Scholar 

  • Six L, Smolders E (2014) Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Sci Total Environ 485:319–328

    Article  CAS  Google Scholar 

  • Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125

    Article  CAS  Google Scholar 

  • Surgun Y, Çöl B, Bürün B (2016) 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation. Acta Physiol Plant 38:1–11

    Article  CAS  Google Scholar 

  • Surgun-Acara Y, Zemheri-Navruz F (2019) 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. J Plant Physiol 238:12–19

    Article  CAS  Google Scholar 

  • Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A (2019) 24-Epibrassinolide modulates primary metabolites, antioxidants, and phytochelatins in Acutodesmus obliquus exposed to lead stress. J Appl Phycol 32:1–14

    Google Scholar 

  • Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H (2007) Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants. Soil Sci Plant Nutr 53:72–77

    Article  CAS  Google Scholar 

  • Tanase C, Bujor OC, Popa VI (2019) Phenolic natural compounds and their influence on physiological processes in plants. In: Watson RR (ed) Polyphenols in Plants (Second Edition). Academic Press, Cambridge, pp 45–58

    Chapter  Google Scholar 

  • Tyburski J, Tretyn A (2010) Glutathione and glutathione disulfide affect adventitious root formation and growth in tomato seedling cuttings. Acta Physiol Plant 32:411–417

    Article  CAS  Google Scholar 

  • Vázquez MN, Guerrero YR, González LM, de la Nova WT (2013) Brassinosteroids and plant responses to heavy metal stress. An overview. Open J Metal 3:34–41

    Article  CAS  Google Scholar 

  • Wahid A, Ghani A, Ali I, Ashraf MY (2007) Effects of cadmium on carbon and nitrogen assimilation in shoots of mung bean [Vigna radiata (L.) Wilczek] seedlings. J Agron Crop Sci 193:357–365

    Article  CAS  Google Scholar 

  • Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res 20:1441–1449

    Article  CAS  Google Scholar 

  • Wang M, Duan SH, Zhou ZC, Chen SB, Wang D (2019) Foliar spraying of melatonin confers cadmium tolerance in Nicotiana tabacum L. Ecotoxicol Environ Saf 170:68–76

    Article  CAS  Google Scholar 

  • Xia XJ, Zhang Y, Wu JX, Wang JT, Yu JQ (2009) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57:8406–8413

    Article  CAS  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanism of brassinosteroids action: from signal transduction to plant development. Mol Plant 4:588–600

    Article  CAS  Google Scholar 

  • Yousaf B, Amina LG, Wang R, Imtiaz M, Rizwan MS, Zia-ur-Rehman M, Qadir A, Si Y (2016) The importance of evaluating metal exposure and predicting human health risks in urban–periurban environments influenced by emerging industry. Chemosphere 150:79–89

    Article  CAS  Google Scholar 

  • Yusuf M, A. Khan T, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol Environ Saf 129:25–34

    Article  CAS  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov 47:157–164

    Google Scholar 

  • Zhang HY, Jiang YN, He ZY, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  Google Scholar 

  • Zhang X, Gao B, Xia H (2014) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol Environ Saf 106:102–108

    Article  CAS  Google Scholar 

  • Zhipanova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, Gonzalez-Garcia MP, Cano-Delgado A, Inze D, Beemster GTS, De Veylder L, Russinova E (2013) Brassinosteroids production and signaling differentially control cell division and expression in the leaf. New Phytol 197:490–502

    Article  CAS  Google Scholar 

  • Zhong WX, Xie CC, Hu D, Pu SY, Xiong X, Ma J, Sun LX, Huang Z, Jiang MY, Li X (2020) Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. Ecotoxicol Environ Saf 187:109831

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31760110).

Author information

Authors and Affiliations

Authors

Contributions

LSW conceived of the study. SYJ, LY, and LY performed the experiments and data analyses. SYJ drafted the manuscript, and LSW reviewed the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shi-Weng Li.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YJ., Li, Y., Leng, Y. et al. 24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid. Environ Sci Pollut Res 28, 52032–52045 (2021). https://doi.org/10.1007/s11356-021-14404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14404-5

Keywords

Navigation