Skip to main content
Log in

Characterizing and modelling the sound absorption of the cellulose acetate fibers coming from cigarette butts

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

This work deals an experimental and theoretical research about the porous structure and the acoustic performance of cellulose acetate coming from the used cigarette filters. The porous structure was studied through the measurement and the prediction (using an inverse methodology) of some non-acoustic properties (bulk density, fiber size, porosity or flow resistivity and tortuosity). The sound absorption performance was evaluated by comparing experimental measurements using an impedance tube according to ISO 10534-2 with the best-fit approach obtained using some empirical models (Delany and Bazley, Garai-Pompoli, Komatsu and Miki). The accuracy of empirical models to obtain the flow resistivity was relatively high showing differences lower than 8% in the case of the Miki model or lower than 12% in the case of Delany & Bazley model. Regarding the absorption spectra, the errors found were lower than 9% for all the empirical models used in this work. These results showed that using relatively simple models such as empirical models were able to predict accurately the acoustic behaviour of the cellulose acetate. Finally, the sound absorption spectra obtained for cellulose acetate were compared with those obtained for fibrous materials currently used in building sector, suggesting that this fibrous waste could act as a possible substitute to traditional ones, due to the similar relatively high NRC values obtained for both type of fibrous absorber (NRC = 0.65).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim ZY, Putra A, Nor MJM, Yaakob MY. Sound absorption performance of natural kenaf fibres. Appl Acoust. 2018;130:107–14. https://doi.org/10.1016/j.apacoust.2017.09.012.

    Article  Google Scholar 

  2. Soltani P, Taban E, Faridan M, Samaei SE, Amininasab S. Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Appl Acoust. 2020;157:106999. https://doi.org/10.1016/j.apacoust.2019.106999.

    Article  Google Scholar 

  3. Taban E, Khavanin A, Ohadi A, Putra A, Jafari AJ, Faridan M, et al. Study on the acoustic characteristics of natural date palm fibres: experimental and theoretical approaches. Build Environ. 2019;161:106274. https://doi.org/10.1016/j.buildenv.2019.106274.

    Article  Google Scholar 

  4. Raj M, Fatima S, Tandon N. An experimental and theoretical study on environment-friendly sound absorber sourced from nettle fibers. J Build Eng. 2020;31:101395. https://doi.org/10.1016/j.jobe.2020.101395.

    Article  Google Scholar 

  5. Maderuelo-Sanz R, Nadal-Gisbert AV, Crespo-Amorós JE, Parres-García F. A novel sound absorber with recycled fibers coming from end of life tires (ELTs). Appl Acoust. 2012;73:402–8. https://doi.org/10.1016/j.apacoust.2011.12.001.

    Article  Google Scholar 

  6. Khan A, Mohamed M, Al Halo N, Benkreira H. Acoustical properties of novel sound absorbers made from recycled granulates. Appl Acoust. 2017;127:80–8. https://doi.org/10.1016/j.apacoust.2017.05.035.

    Article  Google Scholar 

  7. Rubino C, Aracil MB, Liuzzi S, Stefanizzi P, Martellotta F. Wool waste used as sustainable nonwoven for building applications. J Clean Prod. 2021;278:123905. https://doi.org/10.1016/j.jclepro.2020.123905.

    Article  CAS  Google Scholar 

  8. Maderuelo-Sanz R, Barrigón Morillas JM, Gómez Escobar V. The performance of resilient layers made from cork granulates mixed with resins for impact noise reduction. Eur J Wood Wood Prod. 2014;72:833–5. https://doi.org/10.1007/s00107-014-0845-1.

    Article  CAS  Google Scholar 

  9. Yun BY, Cho HM, Kim YU, Lee SC, Berardi U, Kim S. Circular reutilization of coffee waste for sound absorbing panels: a perspective on material recycling. Environ Res. 2020;184:109281. https://doi.org/10.1016/j.envres.2020.109281.

    Article  CAS  Google Scholar 

  10. Gadea Borrell JM, Juliá Sanchis E, Segura Alcaraz J, Montava Belda I. Sustainable sound absorbers from fruit stones waste. Appl Acoust. 2020;161:107164. https://doi.org/10.1016/j.apacoust.2019.107174.

    Article  Google Scholar 

  11. Malawade UA, Jadhav MG. Investigation of the acoustic performance of bagasse. J Mater. 2020;9:882–9. https://doi.org/10.1016/j.jmrt.2019.11.028.

    Article  Google Scholar 

  12. The Tobacco Atlas. Consumption. https://tobaccoatlas.org/topic/consumption/. 2018 (Accessed 13 October 2019).

  13. Kurmus H, Mohajerani A. The toxicity and valorization options of cigarette butts. Waste Manag. 2020;104:104–18. https://doi.org/10.1016/j.wasman.2020.01.011.

    Article  CAS  Google Scholar 

  14. Torkashvand J, Farzadkia M, Sobhi HR, Esrafili A. Littered cigarette butt as a well-known hazardous waste: a comprehensive systematic review. J Hazard Mater. 2020;383:121242. https://doi.org/10.1016/j.jhazmat.2019.121242.

    Article  CAS  Google Scholar 

  15. Mohajerani A, Kadir AA, Larobina L. A practical proposal for solving the world’s cigarette butt problem: recycling in fired clay bricks. Waste Manag. 2016;52:228–44. https://doi.org/10.1016/j.wasman.2016.03.012.

    Article  Google Scholar 

  16. Mohajerani A, Tanriverdi Y, Nguyen BT, Wong KK, Dissanayake HN, Johnson L, et al. Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts. Constr Build Mater. 2017;153:69–80. https://doi.org/10.1016/j.conbuildmat.2017.07.091.

    Article  Google Scholar 

  17. Teixeira MBH, Duarte MAB, Garcez LR, Rubim JC, Gatti TH, Suarez PAZ. Process development for cigarette butts recycling into cellulose pulp. Waste Manag. 2017;60:140–50. https://doi.org/10.1016/j.wasman.2016.10.013.

    Article  CAS  Google Scholar 

  18. Zhao J, Zhang N, Qu C, Wu X, Zhang J, Zhang X. Cigarette butts and their application in corrosion inhibition for N80 steel at 90° C in a hydrochloric acid solution. Ind Eng Chem Res. 2010;49(8):3986–91. https://doi.org/10.1021/ie100168s.

    Article  CAS  Google Scholar 

  19. Ghosh TK, Sadhukhanc S, Ranad D, Sarkarc G, Dase C, Chattopadhyaye S, et al. Treatment of recycled cigarette butts (man-made pollutants) to prepare electrically conducting material. J Indian Chem Soc. 2017;94:863–70.

    CAS  Google Scholar 

  20. Sabzali A, Nikaeen M, Bina B. Evaluation of cigarette filters rods as a biofilm carrier in integrated fixed film activated sludge process. World Acad Sci Eng Technol. 2011;5:82–7. https://doi.org/10.5281/zenodo.1069943.

    Article  Google Scholar 

  21. Marinello S, Lolli F, Gamberini R, Rimini B. A second life for cigarette butts? A review of recycling solutions. J Hazard Mater. 2020;384:121245. https://doi.org/10.1016/j.jhazmat.2019.121245.

    Article  CAS  Google Scholar 

  22. Delany ME, Bazley EN. Acoustical properties of fibrous absorbent materials. Appl.Acoust. 1970;3(2):105–16. https://doi.org/10.1016/0003-682X(70)90031-9.

    Article  Google Scholar 

  23. Garai M, Pompoli F. A simple empirical model of polyester fibre materials for acoustical applications. Appl Acoust. 2005;66(12):1383–98. https://doi.org/10.1016/j.apacoust.2005.04.008.

    Article  Google Scholar 

  24. Miki Y. Acoustical properties of porous materials-generalizations of empirical models. J Acoust Soc Jpn. 1990;11:25–8. https://doi.org/10.1250/ast.11.25.

    Article  Google Scholar 

  25. Mechel FP. Design charts for sound absorber layers. J Acoust Soc Am. 1988;83(3):1002–13. https://doi.org/10.1121/1.396045.

    Article  Google Scholar 

  26. Komatsu T. Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials. Acoust Sci Technol. 2008;29(2):121–9. https://doi.org/10.1250/ast.29.121.

    Article  Google Scholar 

  27. Johnson DL, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech. 1987;176:379–402. https://doi.org/10.1017/S0022112087000727.

    Article  CAS  Google Scholar 

  28. Champoux Y, Allard JF. Dynamic tortuosity and bulk modulus in air saturated porous media. J Appl Phys. 1991;70(4):1975–9. https://doi.org/10.1063/1.349482.

    Article  Google Scholar 

  29. Pride SR, Gangi AF, Morgan FD. Deriving the equations of motion for porous isotropic media. J Acoust Soc Am. 1992;92:3278–90. https://doi.org/10.1121/1.404178.

    Article  Google Scholar 

  30. Pride SR, Morgan FD, Gangi AF. Drag forces of porous-medium acoustics. Phys Rev B. 1993;47:4964–78. https://doi.org/10.1103/PhysRevB.47.4964.

    Article  CAS  Google Scholar 

  31. Lafarge D, Lemarinier P, Allard JF, Tarnow V. Dynamic compressibility of air in porous structures at audible frequencies. J Acoust Soc Am. 1997;102:1995–2006. https://doi.org/10.1121/1.419690.

    Article  Google Scholar 

  32. Allard JF, Atalla N. Propagation of sound in porous media: modelling sound absorbing materials. 2nd ed: Wiley; 2009. https://doi.org/10.1007/978-94-011-1866-8.

  33. Gómez Escobar V, Maderuelo Sanz R. Acoustical performance of samples prepared with cigarette butts. Appl Acoust. 2017;125:166–72. https://doi.org/10.1016/j.apacoust.2017.05.001.

    Article  Google Scholar 

  34. Maderuelo-Sanz R, Gómez Escobar V, Meneses Rodríguez JM. Potential use of cigarette filters as sound porous absorber. Appl Acoust. 2018;129:86–91. https://doi.org/10.1016/j.apacoust.2017.07.011.

    Article  Google Scholar 

  35. Gómez Escobar V, Rey Gozalo G, Pérez CJ. Variability and performance study of the sound absorption of used cigarette butts. Materials. 2019;12(16):2584. https://doi.org/10.3390/ma12162584.

    Article  CAS  Google Scholar 

  36. Koutela N, Fernández E, Saru ML, Psillakis E. A comprehensive study on the leaching of metals from heated tobacco sticks and cigarettes in water and natural water. Sci Total Environ. 2020;714:136700. https://doi.org/10.1016/j.scitotenv.2020.136700.

    Article  CAS  Google Scholar 

  37. Mwaikambo LY, Ansell MP. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci. 2002;84(12):2222–34. https://doi.org/10.1002/app.10460.

    Article  CAS  Google Scholar 

  38. Lee Y, Joo C. Sound absorption properties of recycled polyester fibrous assembly absorbers. Autex Res J. 2003;3:78–84. http://www.autexrj.com/cms/zalaczone_pliki/5-03-2.pdf. Accessed 30 June 2020.

  39. Maderuelo-Sanz R, Martín-Castizo M, Vilchez-Gómez R. The performance of resilient layers made from recycled rubber fluff for impact noise reduction. Appl Acoust. 2011;72:823–8. https://doi.org/10.1016/j.apacoust.2011.05.004.

    Article  Google Scholar 

  40. ASTM, ASTM D-3776. Standard test methods for mass per unit area (Weight) of fabric. 2007 Annual book of ASTM standards. 2007. www.astm.org. Accessed 12 May 2020.

  41. Yang Y, Chen Z, Chen Z, Fu R, Li Y. Sound insulation properties of sandwich structures on glass fiber felts. Fiber Polym. 2015;16:1568–77. https://doi.org/10.1007/s12221-015-5200-6.

    Article  Google Scholar 

  42. Kucuk M, Korkmaz Y. Sound absorption properties of bilayered nonwoven composites. Fiber Polym. 2016;16:941–8. https://doi.org/10.1007/s12221-015-0941-9.

    Article  CAS  Google Scholar 

  43. Maderuelo-Sanz R, Nadal-Gisbert AV, Crespo-Amorós JE, Barrigón Morillas JM, Parrés-García F, Juliá Sanchís E. Influence of the microstructure in the acoustical performance of consolidated lightweight granular materials. Acoust Aust. 2016;44:149–57. https://doi.org/10.1007/s40857-016-0048-5.

    Article  Google Scholar 

  44. Bies DA, Hansen CH. Flow resistance information for acoustical design. Appl Acoust. 1980;13(5):357–91. https://doi.org/10.1016/0003-682X(80)90002-X.

    Article  Google Scholar 

  45. Ingard KU, Dear TA. Measurement of acoustic flow resistance. J Sound Vib. 1985;103(4):567–72. https://doi.org/10.1016/S0022-460X(85)80024-9.

    Article  Google Scholar 

  46. Johnson DL, Plona TJ, Scala C, Pasierb F, Kojima H. Tortuosity and acoustic slow waves. Phys Rev Lett. 1982;49:1840–4. https://doi.org/10.1103/PhysRevLett.49.1840.

    Article  Google Scholar 

  47. Attenborough K. Models for the acoustical characteristics of air filled granular materials. Acta Acust. 1993;64:27–30.

    Google Scholar 

  48. Attenborough K. Acoustical characteristics of rigid fibrous absorbents and granular materials. J Acoust Soc Am. 1983;73:785–99. https://doi.org/10.1121/1.389045.

    Article  Google Scholar 

  49. ISO 10534-2. Acoustics determination of sound absorption coefficient and impedance in impedance tubes. Part 2: Transfer function method. International Organization for Standardization, Geneva 1998.

  50. ASTM, ASTM C423. Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. 2017 Annual book of ASTM standards. 2017. www.astm.org. Accessed 17 Oct 2020.

  51. Pelegrinis MT, Horoshenkov KV, Burnett A. An application of Kozeny–Carman flow resistivity model to predict the acoustical properties of polyester fibre. Appl.Acoust. 2016;101:1–4. https://doi.org/10.1016/j.apacoust.2015.07.019.

    Article  Google Scholar 

  52. Berardi U, Iannace G. Acoustic characterization of natural fibers for sound absorption applications. Build Environ. 2015;94:840–52. https://doi.org/10.1016/j.buildenv.2015.05.029.

    Article  Google Scholar 

  53. Hurrell AI, Horoshenkov KV, Pelegrinis MT. The accuracy of some models for the airflow resistivity of nonwoven materials. Appl Acoust. 2018;130:230–7. https://doi.org/10.1016/j.apacoust.2017.09.024.

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to INTROMAC and Regional Office of Economics, Science and Digital Agenda of the Government of Extremadura.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Maderuelo-Sanz.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maderuelo-Sanz, R. Characterizing and modelling the sound absorption of the cellulose acetate fibers coming from cigarette butts. J Environ Health Sci Engineer 19, 1075–1086 (2021). https://doi.org/10.1007/s40201-021-00675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00675-0

Keywords

Navigation