Skip to main content
Log in

A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This article develops a new discontinuous Galerkin (DG) method with the one-stage arbitrary derivatives in time and space approach to solve one-dimensional hyperbolic conservation laws. This method employs the differential transformation procedure instead of the Cauchy–Kowalewski procedure to recursively express the spatiotemporal expansion coefficients of the solution through the low-order spatial expansion coefficients. The proposed method is free of solving generalized Riemann problems at inter-cells. Compared with the Runge–Kutta DG methods, the current method needs less computer memory due to no intermediate stages. In summary, this method is one step, one stage, fully discrete, and easily achieves arbitrary high-order accuracy in time and space. Extensive numerical results illustrate the good performances of the present method: high-order accuracy for smooth solutions, good resolution for discontinuous solutions and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ayaz F (2003) On the two-dimensional differential transform method. Appl Math Comput 143:361–374

    MathSciNet  MATH  Google Scholar 

  • Ayaz F (2004) Solutions of the system of differential equations by differential transform method. Appl Math Comput 147:547–567

    MathSciNet  MATH  Google Scholar 

  • Balsara DS, Shu C-W (2000) Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys 160:405–452

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu C-W (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comput 52:411–435

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu C-W (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J Comput Phys 141:199–224

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn B, Lin S-Y, Shu C-W (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J Comput Phys 84:90–113

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn B, Hou S, Shu C-W (1990) The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math Comput 54:545–581

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Karniadakis G, Shu C-W (2000) The development of discontinuous Galerkin methods. In: Cockburn B, Karniadakis G, Shu C-W (eds) Discontinuous Galerkin methods: theory, computation and applications. Lecture notes in computational science and engineering, part I: overview, vol 11. Springer, Berlin, pp 3–50

    Google Scholar 

  • Duan J, Tang H (2020) An efficient ADER discontinuous Galerkin scheme for directly solving Hamilton–Jacobi equation. J Comput Math 38(1):58–83

    Article  MathSciNet  MATH  Google Scholar 

  • Dumbser M (2005) Arbitrary high order schemes for the solution of hyperbolic conservation laws in complex domains. Shaker Verlag, Aachen

    Google Scholar 

  • Dumbser M, Munz CD (2005a) ADER discontinuous Galerkin schemes for aeroacoustics. Comput Rendus Mecanique 333:683–687

    Article  MATH  Google Scholar 

  • Dumbser M, Munz CD (2005b) Arbitrary high order discontinuous Galerkin schemes. Numerical methods for hyperbolic and kinetic problems. In: Cordier S, Goudon T, Gutnic M, Sonnendrucker E (eds) IRMA series in mathematics and theoretical physics. EMS Publishing House, Zurich, pp 295–333

    Google Scholar 

  • Dumbser M, Munz CD (2006) Building blocks for arbitrary high order discontinuous Galerkin schemes. J Sci Comput 27:215–230

    Article  MathSciNet  MATH  Google Scholar 

  • Dumbser M, Enaux C, Toro EF (2008) Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J Comput Phys 227:3971–4001

    Article  MathSciNet  MATH  Google Scholar 

  • Dumbser M, Hidalgo A, Zanotti O (2014) High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput Methods Appl Mech Eng 268:359–387

    Article  MathSciNet  MATH  Google Scholar 

  • Fambri F, Dumbser M, Zanotti O (2017) Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier–Stokes and resistive MHD equations. Comput Phys Commun 220:297–318

    Article  MathSciNet  Google Scholar 

  • Fambri F, Dumbser M, Köppel S, Rezzolla L, Zanotti O (2018) ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics. Mon Not R Astron Soc 477:4543–4564

    Google Scholar 

  • Gottlieb S, Ketcheson DI, Shu C-W (2009) High order strong stability preserving time discretizations. J Sci Comput 38:251–289

    Article  MathSciNet  MATH  Google Scholar 

  • Harten A (1987) Uniformly high order accurate essentially non-oscillatory schemes III. J Comput Phys 71:231–303

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang GS, Shu C-W (1996a) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202–228

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang GS, Shu C-W (1996b) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202–228

    Article  MathSciNet  MATH  Google Scholar 

  • Kurnaza A, Oturanc G, Kiris ME (2005) \(n\)-Dimensional differential transformation method for solving PDEs. Int J Comput Math 82(3):369–380

    Article  MathSciNet  MATH  Google Scholar 

  • Norman MR, Finkel H (2012) Multi-moment ADER-Taylor methods for systems of conservation laws with source terms in one dimension. J Comput Phys 231:6622–6642

    Article  MathSciNet  Google Scholar 

  • Pedro JC, Banda MK, Sibanda P (2014) On one-dimensional arbitrary high-order WENO schemes for systems of hyperbolic conservation laws. Comput Appl Math 33:363–384

    Article  MathSciNet  MATH  Google Scholar 

  • Pukhov GE (1982) Differential transforms and circuit theory. Int J Circuit Theory Appl 10:265–276

    Article  MATH  Google Scholar 

  • Qiu J, Shu C-W (2003) Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J Comput Phys 193:115–135

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu J, Dumbser M, Shu C-W (2005) The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput Methods Appl Mech Eng 194:4528–4543

    Article  MathSciNet  MATH  Google Scholar 

  • Rannabauer L, Dumbser M, Bader M (2018) ADER-DG with a-posteriori finite-volume limiting to simulate tsunamis in a parallel adaptive mesh refinement framework. Comput Fluids 000:1–8

    MathSciNet  MATH  Google Scholar 

  • Shu C-W (1997) Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253, ICASE Report No. 97-65

  • Shu C-W (2016) High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments. J Comput Phys 316:598–613

    Article  MathSciNet  MATH  Google Scholar 

  • Shu C-W, Osher S (1988) Efficient implementation of essentially non-oscillatory shock capturing schemes. J Comput Phys 77(2):439–471

    Article  MathSciNet  MATH  Google Scholar 

  • Sod G (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Titarev VA, Toro EF (2002) ADER: arbitrary high order Godunov approach. J Sci Comput 17:609–618

    Article  MathSciNet  MATH  Google Scholar 

  • Titarev VA, Toro EF (2005) ADER schemes for three-dimensional non-linear hyperbolic systems. J Comput Phys 204(2):715–736

    Article  MathSciNet  MATH  Google Scholar 

  • Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Toro EF, Titarev VA (2005) TVD fluxes for the high-order ADER schemes. J Sci Comput 24(3):285–309

    Article  MathSciNet  MATH  Google Scholar 

  • Toro EF, Millington RC, Nejad LAM (2001) Towards very high order Godunov schemes. In: Toro EF (ed) Godunov methods. Theory and applications, edited review. Kluwer Academic Publishers, Dordrecht, pp 907–940

    MATH  Google Scholar 

  • Woodward P, Colella P (1984) The numerical simulation of two-dimensional fluid flow with strong shocks. J Comput Phys 54(1):115–173

    Article  MathSciNet  MATH  Google Scholar 

  • Zanotti O, Fambri F, Dumbser M, Hidalgo A (2015) Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput Fluids 118:204–224

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou JK (1986) Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (11771228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouguo Qian.

Additional information

Communicated by Abdellah Hadjad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The algorithm of the differential transformation procedure for Burgers’ equation

figure a

Appendix B: The algorithm of the differential transformation procedure for Euler equations

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, G., Qian, S. et al. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws . Comp. Appl. Math. 40, 139 (2021). https://doi.org/10.1007/s40314-021-01525-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01525-3

Keywords

Mathematics Subject Classification

Navigation