Skip to main content

Advertisement

Log in

Derivations of Partial Molar Excess Gibbs Energy of Mixing Expressions for Common Thermodynamic Models

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Modern computational thermodynamics methods rely on the use of numerical models that represent chemical systems. Typically, these models are formulated in terms of the Gibbs energy, which must be minimised to find the conditions of thermodynamic equilibrium. Numerous thermodynamic models have been developed to capture the behaviour of regular solid and liquid solutions, ionic ceramics, multi-sublattice metallic alloys, short and long range ordering, and much more. Some classes of commonly used thermodynamic models include substitutional solutions and compound energy formalism. The mathematical formulation of the Gibbs energy of a solution phase represented by any of the aforementioned models takes on a unique form, which requires special consideration for obtaining the partial derivatives in the Hessian matrix of a Gibbs energy minimiser. This paper provides derivations of the partial molar excess Gibbs energy of mixing of some common classes of thermodynamic models for use in a Gibbs energy minimiser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Unless specified otherwise, all the expressions for chemical potentials account for the chain rule and the expressions from the referenced equations can be directly substituted.

References

  1. L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams—With Special Reference to Refractory Metals (Academic Press, London, 1970).

    Google Scholar 

  2. W. White, S. Johnson, G. Dantzig, Chemical Equilibrium in Complex Mixtures. J. Chem. Phys. 28(5), 751 (1958)

    Article  ADS  Google Scholar 

  3. M. Piro, S. Simunovic, T. Besmann, B. Lewis, W. Thompson, The Thermochemistry Library Thermochimica. Comput. Mater. Sci. 67, 266 (2013)

    Article  Google Scholar 

  4. P. Bajpai, M. Poschmann, D. Andrš, C. Bhave, M. Tonks, M. Piro, in TMS 2020 149th Annual Meeting and Exhibition Supplemental Proceedings (Springer, 2020), pp. 1013–1025

  5. J.J. Van Laar, Die schmelz-oder erstarrungskurven bei binären systemen, wenn die feste phase ein gemisch (amorphe feste lösung oder mischkristalle) der beiden komponenten ist. Z. Phys. Chem. 63(1), 216 (1908)

    Article  Google Scholar 

  6. O. Redlich, A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 40(2), 345 (1948)

    Article  Google Scholar 

  7. M. Hillert, Empirical Methods of Predicting and Representing Thermodynamic Properties of Ternary Solution Phases. Calphad 4(1), 1 (1980). https://doi.org/10.1016/0364-5916(80)90016-4

    Article  Google Scholar 

  8. F. Kohler, Estimation of the Thermodynamic Data for a Ternary System from the Corresponding Binary Systems. Monatshefte für Chemie - Chem. Mon. 91(4), 738 (1960)

    Article  Google Scholar 

  9. G.W. Toop, Predicting ternary activities using binary data. Trans. Metall. Soc. AIME 223, 850 (1965)

    Google Scholar 

  10. C. Colinet, Estimation Des Grandeurs Thermodynamiques Des Alliages Ternaries (DES, Faculté Des Sciences, Université de Grenoble, France, 1967).

  11. Y.M. Muggianu, M. Gambino, J.P. Bros, Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 K. choix d’une représentation analytique des grandeurs d’excès intégrales et partielles de mélange. J. Chim. Phys. 72, 83 (1975)

    Article  Google Scholar 

  12. M.H. Piro (ed.), Advances in Nuclear Fuel Chemistry. Woodhead Publishing Series in Energy (Woodhead Publishing, Sawston, 2020), pp. 159–182. https://doi.org/10.1016/B978-0-08-102571-0.00004-5

    Book  Google Scholar 

  13. P. Chartrand, A. Pelton, On the Choice of Geometric Thermodynamic Models. J. Phase Equilib. 21(2), 141 (2000)

    Article  Google Scholar 

  14. I. Ansara, Comparison of Methods for Thermodynamic Calculation of Phase Diagrams. Int. Met. Rev. 24(1), 20 (1979)

    Article  Google Scholar 

  15. G. Eriksson, K. Hack, Chemsage—A Computer Program for the Calculation of Complex Chemical Equilibria. Metall. Mater. Trans. B 21B, 1013 (1990)

    Article  ADS  Google Scholar 

  16. M. Hillert, The Compound Energy Formalism. J. Alloys Compd. 320(2), 161 (2001). https://doi.org/10.1016/S0925-8388(00)01481-X

    Article  Google Scholar 

  17. B. Sundman, J. Ågren, A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications. J. Phys. Chem. Solids 42, 297 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was funded, in part, by the U.S. Department of Energy Nuclear Energy Advanced Modeling and Simulation program. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program and the Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parikshit Bajpai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, P., Poschmann, M. & Piro, M.H.A. Derivations of Partial Molar Excess Gibbs Energy of Mixing Expressions for Common Thermodynamic Models. J. Phase Equilib. Diffus. 42, 333–347 (2021). https://doi.org/10.1007/s11669-021-00886-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00886-w

Keywords

Navigation