Skip to main content
Log in

Structural modifications and enhanced ferroelectric nature of NdFeO3–PbTiO3 composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this contribution, we reported our findings on NdFeO3–PbTiO3 composite system synthesized by conventional solid-state reaction route. The cell parameters, density and bond lengths (Fe-OI, Fe-OII) are determined by Rietveld refinement of X-ray diffraction data. Phase purity of the system was further confirmed through Fourier transform infrared (FTIR) and Raman spectroscopy techniques. The FTIR spectra reflected two important absorption bands around 656–505 cm−1 and 486–412 cm−1, corresponding to stretching (ν1) and bending (ν2) vibrational modes. The stretching vibrational mode (ν1) represents the absorbed IR energy in metal oxide (M–O) bonds. If the Raman spectra are related to two different symmetries, this includes the presence of two different phases in the sample. Thus, the phase purity is absent. The blue shift of Raman active mode at 720 cm−1 in pristine sample suggests that the increase in PbTiO3 concentration enhances the structural distortion in the system. The particle sizes as estimated using SEM micrographs were found to be in the range 147–250 nm. The ferroelectric behavior of NdFeO3 has been improved drastically with increase in PbTiO3 concentration. The P-E loops fitted by ferroelectric capacitor model established a good agreement between experimental and simulated data. The thermal properties of the powder samples were analyzed in a wide temperature range (300–900 K). The room temperature dielectric permittivity (ε′) and loss tangent (tanδ) for all the samples were analyzed in a broad frequency range (75 kHz–5 MHz). The behavior of dielectric permittivity in low-frequency region followed Maxwell–Wagner interfacial model, while in the high-frequency region, the composite system exhibited capacitive nature. The Néel temperature of the composite system decreased as compared to that of NdFeO3. The energy bandgap as determined with the help of Tauc’s plots exhibits a slight decrease for composite samples in respect of pristine NdFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Tongyun, S. Liming, L.I.U. Feng, Z.H.U. Weichang, J. Rare Earths 30, 1138 (2012)

    Article  Google Scholar 

  2. H. Sakakima, M. Satomi, E. Hirota, H. Adachi, IEEE Trans. Magn. 35, 2958 (1999)

    Article  ADS  Google Scholar 

  3. D.S. Schmool, N. Keller, M. Guyot, R. Krishnan, M. Tessier, J. Appl. Phys. 86, 5712 (1999)

    Article  ADS  Google Scholar 

  4. E. Traversa, S. Matsushima, G. Okada, Y. Sadaoka, Y. Sakai, K. Watanabe, Sens. Actuators, B Chem. 25, 661 (1995)

    Article  Google Scholar 

  5. A. Mahapatra, D. Prochowicz, M.M. Tavakoli, S. Trivedi, P. Kumar, P. Yadav, J. Mater. Chem. A 8, 27 (2020)

    Article  Google Scholar 

  6. G. Sun, W. Qian, J. Jiao, T. Han, Y. Shi, X.-Y. Hu, L. Wang, J. Mater. Chem. A 8, 9590 (2020)

    Article  Google Scholar 

  7. P. Roy, N. Kumar Sinha, S. Tiwari, A. Khare, Sol. Energy 198, 665 (2020)

    Article  ADS  Google Scholar 

  8. G. Hearne, M. Pasternak, R. Taylor, P. Lacorre, Phys. Rev. B 51, 11495 (1995)

    Article  ADS  Google Scholar 

  9. D. Treves, J. Appl. Phys. 36, 1033 (1965)

    Article  ADS  Google Scholar 

  10. I. Sosnowska, E. Steichele, A. Hewat, Phys. B+C 136, 394 (1986)

    Article  ADS  Google Scholar 

  11. G. Song, J. Jiang, B. Kang, J. Zhang, Z. Cheng, G. Ma, S. Cao, Solid State Commun. 211, 47 (2015)

    Article  ADS  Google Scholar 

  12. J. Bartolomé, E. Palacios, Kuz’min MD, Bartolomé F, Sosnowska I, Przeniosło R, Sonntag R, Lukina MM, , Phys. Rev. B 55, 11432 (1997)

    Article  ADS  Google Scholar 

  13. R. Przeniosto, I. Sosnowska, P. Fischer, J. Magn. Magn. Mater. 140144, 2153 (1995)

    Article  ADS  Google Scholar 

  14. W. Sławiński, R. Przeniosło, I. Sosnowska, E. Suard, J. Phys.: Condens. Matter 17, 4605 (2005)

    ADS  Google Scholar 

  15. N. Aparnadevi, K. Saravana Kumar, M. Manikandan, D. Paul Joseph, C. Venkateswaran, J. Appl. Phys. 120, 034101 (2016)

    Article  ADS  Google Scholar 

  16. W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B Conden. Matter Mater. Phys. 78, 014401 (2008)

    Article  ADS  Google Scholar 

  17. D. Pang, C. He, X. Long, J. Alloy. Compd. 709, 16 (2017)

    Article  Google Scholar 

  18. T. Murtaza, M.S. Khan, J. Ali, T. Hussain, K. Asokan, J. Mater. Sci. Mater. Electron. 29, 18573 (2018)

    Article  Google Scholar 

  19. A. Mulyawan, Yusnasfi, and W. Ari Adi, Metalurgi 3, 105 (2017)

    Google Scholar 

  20. A. Singh, R. Chatterjee, Appl. Phys. Lett. 93, 182908 (2008)

    Article  ADS  Google Scholar 

  21. D. Pang, C. He, X. Li, S. Han, S. Pan, X. Long, Ceram. Int. 42, 9347 (2016)

    Article  Google Scholar 

  22. R.E. Cohen, Nature 358, 136 (1992)

    Article  ADS  Google Scholar 

  23. S. Kumar, J. Pal, S. Kaur, V. Sharma, S. Dahiya, P.D. Babu, M. Singh, A. Ray, T. Maitra, A. Singh, J. Alloys Compound. 764, 824 (2018)

    Article  Google Scholar 

  24. X. Peng, H. Kang, L. Liu, C. Hu, L. Fang, J. Chen, X. Xing, Solid State Sci. 15, 91 (2013)

    Article  ADS  Google Scholar 

  25. H. Zhao, J. Miao, L. Zhang, Y. Rong, J. Chen, J. Deng, R. Yu, J. Cao, H. Wang, X. Xing, Dalton Trans. 45, 1554 (2016)

    Article  Google Scholar 

  26. R.A. Young, Cryst. Res. Technol. 30, 494 (1995)

    Article  Google Scholar 

  27. M.D. Luu, N.N. Dao, D. Van Nguyen, N.C. Pham, T.N. Vu, T.D. Doan, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 025015 (2016)

    Article  ADS  Google Scholar 

  28. K. Kaviyarasu, E. Manikandan, Z.Y. Nuru, M. Maaza, J. Alloy. Compd. 649, 50 (2015)

    Article  Google Scholar 

  29. S. Husain, A.O.A. Keelani, Mater. Today Proc. 5, 5615 (2018)

    Article  Google Scholar 

  30. M. Abushad, M. Arshad, S. Naseem, S. Husain, W. Khan, Mater. Chem. Phys. 256, 123641 (2020)

    Article  Google Scholar 

  31. P. Bindu, S. Thomas, J. Theor. Phys. 8, 123 (2014)

    Google Scholar 

  32. I. Bhat, S. Husain, W. Khan, S.I. Patil, Mater. Res. Bull. 48, 4506 (2013)

    Article  Google Scholar 

  33. N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, J. Coord. Chem. 66, 4119 (2013)

    Article  Google Scholar 

  34. N.N. Golovnev, L.A. Solovyov, M.K. Lesnikov, S.N. Vereshchagin, V.V. Atuchin, Inorg. Chim. Acta 467, 39 (2017)

    Article  Google Scholar 

  35. L.J. Bellamy, The Infra-Red Spectra of Complex Molecules (Springer, Netherlands, Dordrecht, 1975).

    Book  Google Scholar 

  36. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Ceram. Int. 46, 8640 (2020)

    Article  Google Scholar 

  37. H. Singh, K.L. Yadav, Ceram. Int. 41, 9285 (2015)

    Article  Google Scholar 

  38. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary, Ceram. Int. 46, 27336 (2020)

    Article  Google Scholar 

  39. S. Manzoor, S. Husain, J. Appl. Phys. 124, 065110 (2018)

    Article  ADS  Google Scholar 

  40. K. Sultan, M. Ikram, K. Asokan, RSC Adv. 5, 93867 (2015)

    Article  ADS  Google Scholar 

  41. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, W. Khan, J. Alloy. Compd. 806, 1250 (2019)

    Article  Google Scholar 

  42. M.K. Singh, H.M. Jang, H.C. Gupta, R.S. Katiyar, J. Raman Spectrosc. 39, 842 (2008)

    Article  ADS  Google Scholar 

  43. A. Wu, G. Cheng, H. Shen, J. Xu, Y. Chu, Z. Ge, Asia-Pac. J. Chem. Eng. 4, 518 (2009)

    Article  Google Scholar 

  44. M.C. Weber, M. Guennou, H.J. Zhao, Phys. Rev. B 214103, 1 (2016)

    Google Scholar 

  45. K.K. Mishra, V. Sivasubramanian, R.M. Sarguna, T.R. Ravindran, A.K. Arora, J. Solid State Chem. 184, 2381 (2011)

    Article  ADS  Google Scholar 

  46. S. Sharma, P. Chauhan, S. Husain, Mater. Res. Exp. 5, 15014 (2018)

    Article  Google Scholar 

  47. H. Zhao, X. Peng, L. Zhang, J. Chen, W. Yan, X. Xing, Appl. Phys. Lett. 103, 082904 (2013)

    Article  ADS  Google Scholar 

  48. P. Gang, Y. Jun, W. Yunbo, W. Longhai, L. Jia, Integr. Ferroelectr. 89, 45 (2007)

    Article  Google Scholar 

  49. T. Prodromakis, C. Papavassiliou, Appl. Surf. Sci. 255, 6989 (2009)

    Article  ADS  Google Scholar 

  50. W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)

    Article  ADS  Google Scholar 

  51. A. Somvanshi, S. Husain, W. Khan, J. Alloy. Compd. 778, 439 (2019)

    Article  Google Scholar 

  52. N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, J. Coord. Chem. 68, 1865 (2015)

    Article  Google Scholar 

  53. Y.G. Denisenko, A.S. Aleksandrovsky, V.V. Atuchin, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, N.P. Shestakov, O.V. Andreev, J. Ind. Eng. Chem. 68, 109 (2018)

    Article  Google Scholar 

  54. V. Grossman, S.V. Adichtchev, V.V. Atuchin, B.G. Bazarov, J.G. Bazarova, N. Kuratieva, A.S. Oreshonkov, N.V. Pervukhina, N.V. Surovtsev, Inorg. Chem. 59, 12681 (2020)

    Article  Google Scholar 

  55. S.C. Parida, S.K. Rakshit, Z. Singh, J. Solid State Chem. 181, 101 (2008)

    Article  ADS  Google Scholar 

  56. V.V. Atuchin, L.I. Isaenko, V.G. Kesler, Z.S. Lin, M.S. Molokeev, A.P. Yelisseyev, S.A. Zhurkov, J. Solid State Chem. 187, 159 (2012)

    Article  ADS  Google Scholar 

  57. A.H. Reshak, Z.A. Alahmed, J. Bila, V.V. Atuchin, B.G. Bazarov, O.D. Chimitova, M.S. Molokeev, I.P. Prosvirin, A.P. Yelisseyev, The J. Phys. Chem. C 120, 10559 (2016)

    Article  Google Scholar 

  58. V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, S.G. Dorzhieva, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, A.M. Pugachev, Y.L. Tushinova, A.P. Yelisseyev, Adv. Powder Technol. 28, 1309 (2017)

    Article  Google Scholar 

  59. N. Zarrin, S. Husain, W. Khan, S. Manzoor, J. Alloy. Compd. 784, 541 (2019)

    Article  Google Scholar 

  60. D.L. Wood, J.P. Remeika, E.D. Kolb, J. Appl. Phys. 41, 5315 (1970)

    Article  ADS  Google Scholar 

  61. J.I. Pankove, Prentice-Hall (Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

  62. S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S.D. More, K.M. Jadhav, Ceram. Int. 46, 13170 (2020)

    Article  Google Scholar 

  63. S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, N. Zarrin, Appl. Phys. A 3, 1 (2019)

    Google Scholar 

  64. E.A. Davis, N.F. Mott, Phil. Mag. 22, 0903 (1970)

    Article  ADS  Google Scholar 

  65. S. Singh, A. Singh, B.C. Yadav, P.K. Dwivedi, Sens. Actuators B Chem. 177, 730 (2013)

    Article  Google Scholar 

  66. S. A. Mir, M. Ikram, and K. Asokan, Journal of Physics: Conference Series 534, 012017 (2014).

  67. V. Džimbeg-Malčić, Ž Barbarić-Mikočević, K. Itrić, Tehnicki Vjesnik 19, 191 (2012)

    Google Scholar 

  68. J.-S. Zhou, J.B. Goodenough, Phys. Rev. Lett. 247202, 1 (2006)

    Google Scholar 

  69. E.P. O’Reilly, J. Robertson, Phys. Rev. B 34, 8684 (1986)

    Article  ADS  Google Scholar 

  70. A.A.A. Qahtan, S. Husain, A. Somvanshi, M. Fatema, W. Khan, J. Alloys Compounds 843, 155637 (2020)

    Article  Google Scholar 

  71. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981)

    Article  ADS  Google Scholar 

  72. H. Sumi, Y. Toyozawa, J. Phys. Soc. Jpn. 31, 342 (1971)

    Article  ADS  Google Scholar 

  73. S. M. Wasim, G. Marı́n, C. Rincón, P. Bocaranda, and G. Sánchez Pérez, J. Phys. Chem. Solids 61, 669 (2000)

Download references

Acknowledgements

This work is financially supported by UGC-DAE CSR, Mumbai, under the project CRS-M-271. One of the authors Anand Somvanshi is especially thankful to Prof. Ranjan Kumar Singh, department of Physics, B. H. U., Varanasi for his considerable help in Raman characterization and Dr. Siddharth Parashari, Faculty of Science, University of Zagreb, Croatia for computational help. Department of Chemistry and USIF, AMU, are also acknowledged for providing optical and SEM-EDX facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somvanshi, A., Ahmad, A., Husain, S. et al. Structural modifications and enhanced ferroelectric nature of NdFeO3–PbTiO3 composites. Appl. Phys. A 127, 424 (2021). https://doi.org/10.1007/s00339-021-04562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04562-1

Keywords

Navigation