Skip to main content
Log in

A New Approach for the Leaching of Palladium from Spent Pd/C Catalyst in HCl–H2O2 System

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Recovery of the spent precious metal catalysts by suitable methods is very important for chemical industries. This work introduces a new method to provide the optimal conditions of the leaching of palladium from spent Pd/C catalyst in HCl–H2O2 system. Response surface methodology (RSM) and the Box–Behnken method with four independent variables including HCl concentration (wt %), H2O2 concentration (wt %), leaching temperature (°C) and leaching time (min) are used for building a new correlation. The transmission electron microscopy (TEM) images, wide-angle X-ray diffraction (XRD) patterns and adsorption/desorption isotherms of N2 are used to study the changes of catalyst surface during the leaching process. According to the outputs of the new model, the predicted value for the maximum palladium recovery is equal to 80.6%, which is comparable with the experimental value (82.5%) in the same condition. The feasibility of complete palladium recovery from spent Pd/C catalyst by leaching method is also evaluated. The results show that leaching in extremely oxidizing conditions cannot lead to the complete palladium recovery from Pd/C catalyst because a considerable portion of the palladium remains on the carbon support surface. Moreover, the leaching process significantly can affect the surface properties of the activated carbon supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Agrawal, J.P., High Energy Materials. Propellants, Explosives and Pyrotechnics, Weinheim: Wiley-VCH, 2010.

    Book  Google Scholar 

  2. Klapötke, T.M., Energetic Materials Encyclopedia, Walter de Gruyter, 2018.

    Book  Google Scholar 

  3. Klapötke, T.M., Chemistry of High-Energy Materials, Walter de Gruyter, 2019.

    Book  Google Scholar 

  4. Chen, J., Zhang, W., Chen, L., Ma, L., Gao, H., and Wang, T., ChemPlusChem, 2013, vol. 78, no. 2, pp. 142–148.

    Article  CAS  Google Scholar 

  5. Kainz, Q.M., Linhardt, R., Grass, R.N., Vilé, G., Pérez-Ramírez, J., Stark, W.J., et al., Adv. Funct. Mater., 2014, vol. 24, no. 14, pp. 2020–2027.

    Article  CAS  Google Scholar 

  6. Fotouhi-Far, F., Bashiri, H., and Hamadanian, M., Propellants, Explos., Pyrotech., 2017, vol. 42, no. 2, pp. 213–219.

    Article  CAS  Google Scholar 

  7. Fotouhi-Far, F., Bashiri, H., Hamadanian, M., and Keshavarz, M.H., Inorg. Nano-Met. Chem., 2017, vol. 47, no. 11, pp. 1489–1494.

    CAS  Google Scholar 

  8. Mousavi, S., Nazari, B., Keshavarz, M.H., and Bordbar, A.-K., Ind. Eng. Chem. Res., 2020, vol. 59, pp. 1862–1874.

    Article  CAS  Google Scholar 

  9. Belyani, S., Keshavarz, M.H., Darbani, S.M.R., and Tehrani, M.K., Appl. Opt., 2019, vol. 58, no. 4, pp. 794–799.

    Article  CAS  Google Scholar 

  10. Keshavarz, M.H., Belyani, S., Darbani, S.M.R., and Tehrani, M.K., Z. Anorg. Allg. Chem., 2019, vol. 645, no. 16, pp. 1057–1061.

    Article  CAS  Google Scholar 

  11. Belyani, S., Keshavarz, M.H., Darbani, S.M.R., and Tehrani, M.K., Z. Anorg. Allg. Chem., 2020, vol. 646, no. 2, pp. 65–69.

    Article  CAS  Google Scholar 

  12. Auer, E., Freund, A., Pietsch, J., and Tacke, T., Appl. Catal., A, 1998, vol. 173, no. 2, pp. 259–271.

  13. Handbook of Heterogeneous Catalysis, Kotrel, S., Brauninger, S., Ertl, G., Knoezinger, H., Schueth, F., and Weitkamp, J., Eds., Weinheim: Wiley-VCH, 2008.

    Google Scholar 

  14. Li, J., Ma, L., Li, X., Lu, C., and Liu, H., Ind. Eng. Chem. Res., 2005, vol. 44, no. 15, pp. 5478–5482.

    Article  CAS  Google Scholar 

  15. Akcil, A., Erust, C., Gahan, C.S., Ozgun, M., Sahin, M., and Tuncuk, A., Waste Manage., 2015, vol. 45, pp. 258–271.

    Article  CAS  Google Scholar 

  16. Fernandes, T.A., Kurhe, D.K., Chavan, A.A., and Jayaram, R.V., Hydrometallurgy, 2015, vol. 165, no. 1, pp. 199–205.

    Article  CAS  Google Scholar 

  17. Harjanto, S., Cao, Y., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., et al., Mater. Trans., 2006, vol. 47, no. 1, pp. 129–135.

    Article  CAS  Google Scholar 

  18. Jha, M.K., Lee, J-C., Kim, M-S., Jeong, J., Kim, B.-S., and Kumar, V., Hydrometallurgy, 2013, vol. 133, pp. 23–32.

    Article  CAS  Google Scholar 

  19. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E., and Deveci, H., Miner. Eng., 2012, vol. 25, no. 1, pp. 28–37.

    Article  CAS  Google Scholar 

  20. Zhang, Y., Liu, S., Xie, H., Zeng, X., and Li, J., Procedia Environ. Sci., 2012, vol. 16, pp. 560–568.

    Article  CAS  Google Scholar 

  21. Cayumil, R., Khanna, R., Rajarao, R., Mukherjee, P., and Sahajwalla, V., Waste Manage., 2016, vol. 57, pp. 121–130.

    Article  CAS  Google Scholar 

  22. Jing-ying, L., Xiu-Li, X., and Wen-quan, L., Waste Manage., 2012, vol. 32, no. 6, pp. 1209–1212.

    Article  CAS  Google Scholar 

  23. Ilankoon, I., Ghorbani, Y., Chong, M.N., Herath, G., Moyo, T., and Petersen, J., Waste Manage., 2018, vol. 82, pp. 258–275.

    Article  CAS  Google Scholar 

  24. Behnamfard, A., Salarirad, M.M., and Veglio, F., Waste Manage., 2013, vol. 33, no. 11, pp. 2354–2363.

    Article  CAS  Google Scholar 

  25. Chang, C.-R., Zhao, Z.-J., Köhler, K., Genest, A., Li, J., and Rösch, N., Catal.: Sci. Technol., 2012, vol. 2, no. 11, pp. 2238–2248.

    CAS  Google Scholar 

  26. Ramezani-Dakhel, H., Mirau, P.A., Naik, R.R., Knecht, M.R., and Heinz, H., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 15, pp. 5488–5492.

    Article  CAS  Google Scholar 

  27. Richardson, J.M. and Jones, C.W., J. Catal., 2007, vol. 251, no. 1, pp. 80–93.

    Article  CAS  Google Scholar 

  28. Wang, S., Chen, A., Zhang, Z., and Peng, J., Environ. Prog. Sustainable Energy, 2014, vol. 33, no. 3, pp. 913–917.

    Article  CAS  Google Scholar 

  29. Zhao, F., Shirai, M., Ikushima, Y., and Arai, M., J. Mol. Catal. A: Chem., 2002, vol. 180, no. 1, pp. 211–219.

    Article  CAS  Google Scholar 

  30. Soomro, S.S., Ansari, F.L., Chatziapostolou, K., and Köhler, K., J. Catal., 2010, vol. 273, no. 2, pp. 138–146.

    Article  CAS  Google Scholar 

  31. Keller, M., Hameau, A., Spataro, G., Ladeira, S., Caminade, A.-M., Majoral, J.-P., et al., Green Chem., 2012, vol. 14, no. 10, pp. 2807–2815.

    Article  CAS  Google Scholar 

  32. Keshavarz, M.H., Gharagheizi, F., Shokrolahi, A., and Zakinejad, S., J. Hazard. Mater., 2012, vol. 237, pp. 79–101.

    Article  CAS  Google Scholar 

  33. Keshavarz, M.H. and Pouretedal, H.R., Med. Chem. Res., 2013, vol. 22, no. 3, pp. 1238–1257.

    Article  CAS  Google Scholar 

  34. Pouretedal, H.R. and Keshavarz, M.H., J. Iran. Chem. Soc., 2011, vol. 8, no. 1, pp. 78–89.

    Article  CAS  Google Scholar 

  35. Pouretedal, H.R., Keshavarz, M.H., and Abbasi, A., J. Iran. Chem. Soc., 2015, vol. 12, no. 3, pp. 487–502.

    CAS  Google Scholar 

  36. Barakat, M. and Mahmoud, M., Hydrometallurgy, 2004, vol. 72, no. 3, pp. 179–184.

    Article  CAS  Google Scholar 

  37. Sarioglan, S., Platinum Met. Rev., 2013, vol. 57, no. 4, pp. 289–296.

    Article  CAS  Google Scholar 

  38. Simonov, P., Troitskii, S.Yu., and Likholobov, V., Kinet. Catal., 2000, vol. 41, no. 2, pp. 255–269.

    Article  CAS  Google Scholar 

  39. Toebes, M.L., van Dillen, J.A., and de Jong, K.P., J. Mol. Catal. A: Chem., 2001, vol. 173, no. 1, pp. 75–98.

    Article  CAS  Google Scholar 

  40. Bazaki, H., Kawabe, S., Miya, H., and Kodama, T., Propellants, Explos., Pyrotech., 1998, vol. 23, no. 6, pp. 333–336.

    Article  CAS  Google Scholar 

  41. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., and Escaleira, L.A., Talanta, 2008, vol. 76, no. 5, pp. 965–977.

    Article  CAS  Google Scholar 

  42. Ferreira, S.C., Bruns, R., Ferreira, H., Matos, G., David, J., Brandao, G., et al., Anal. Chim. Acta, 2007, vol. 597, no. 2, pp. 179–186.

    Article  CAS  Google Scholar 

  43. Khuri, A.I. and Mukhopadhyay, S., Wiley Interdiscip. Rev.: Comput. Stat., 2010, vol. 2, no. 2, pp. 128–149.

    Article  Google Scholar 

  44. Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquérol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 57, p. 603.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the University of Kashan for supporting this work by grant no. 682211/1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadis Bashiri or Mohammad Hossein Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotouhi-Far, F., Bashiri, H., Hamadanian, M. et al. A New Approach for the Leaching of Palladium from Spent Pd/C Catalyst in HCl–H2O2 System. Prot Met Phys Chem Surf 57, 297–305 (2021). https://doi.org/10.1134/S2070205121010093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121010093

Keywords:

Navigation